Decarbonizing residential building energy use -
demand reduction optimization under uncertainty

Jan Hensen

_ Technische Universiteit
www.tue.nl/en/research/researchers/jan-hensen/ Eindhoven
University of Technology



https://www.tue.nl/en/research/researchers/jan-hensen/

Design stage residential energy demand
reduction optimization under uncertainty ....

* Context

e Simulation based parametric optimization
* Uncertainties — and how relevant

e Simulation based robustness analysis

* Design vs operations optimization

* Conclusions



Challenges — Netherlands context

 EU and NL 2030 - 2050 decarbonization goals

* NL 6 million residences/houses from different periods and
corresponding building (energy) regulations

* Various renovation (energy efficiency) needs
* 60% owner occupied; 40% rental

* What are optimal renovation solutions ?



NL housing stock renovation

Lahi

e Simulation based decision support

e “Classic” parametric optimization

* Typical Dutch house example:
 Various shell renovation options
 Various heating systems options
* 3 Occupant behavior profiles

* Cost-optimal solutions




(3)

uajsoysbulialsanu|

{1=eelgg s 3)
uajsoy ajeio]

(%6}

aipnpas-beeinajwiepy

Performance indicators

Renovation options

{1eelZw )
Beeinsjuuepy

(reel OE '%)
ananpal-<Q)

Buwsenian) seel gg ¢ By)

10035UN-X0 D

(Bujsoy1ano uain)
HOJW0IBUIAN

(Buiiylasanc uain)
Hojuwodiawo7

ayibje-ajuuepp

anejnuaA

PlaYIYPIPIYINT

se|5

(apieem-0y)
lao|p ane|os)

(apieem-2y)
}eq 21e|os|

(apieem-2y)
annp ane|osj

| -

- ¥

5 ¥

Alle’Combinaties Simuleren

CO2 energydemand  costs

comfort

roof floor glazing draft vent heating

walls



[ 1]
uaisoysbulialsanu|

(teelpe/ 3)
usjsoy a|ejo]

(36) /
npai-beeina ; i -
alpnp AABILLLIE A = g \.__m = W w__ = mm | m
| _._.___ _ ] __—_
m (el zuw ) . T_ ! | _
EEJASIULIE N = T e
M gl 2 8 % 8 8 ) °
LY E | % S
SO \ R\Y
anaNpal-f0D o ] { =l w = | o
" Frins e i i _ %
[l !
___ | ___ | L
fuwiemaan) seel ge f By) U ] W .
j0015UN-0D) = " < - x = = 2 'Y =

{Buj@oylanc uaan)
HIOJLLIODISTUIAN

(Bunpuyiaanc uaan)
Hojuwoddawoy

Performance indicators

ay1Bje-ajuuepn

ane|ua

PIOWRPIPIYINT =

se|o

(apieem-0y)
d30|A 211E|05|

(apieem-2Y)
Hyeq =21e|os5)

(apieem-oY)

Renovation options

innp anejos|

3
1.79 £

CO2 energydemand  costs

comfort

roof floor glazing draft vent heating

walls

approx. 10000 combinations



(3]

_._WumOu__mm_-__Lmew}.:_ BT ___“.
L\
(1eel 0g / 3) : \ f _

ualsoy ajelo| e

Warmtevraag

(%)
anpnpai-beeinajwiiepn

70

(dee [Zu )
Beeiasiuuepn

CO2-uitstoot

(1eel o€ '%)
ananpal-f0D

Buiwsesaan) ieel g ¢ By)
ywosun-t0D

(Buyjacy1ana uain)
HOJLIODIa3UIAN

| (]
L2
£
Q
]
-
Q
£
O
I~

Performance indicators

(Bunyamanc uaun)
Hojuwioolawoz

ayibje-ajuuepp

ane|Iuap

PIRYIYPIPIYAM

(apieem-a)y)
innpy anejos|

s€|9
(%]
c
(@) (epieem-2y)
e lao|p ane|os)|
= I I
o
m (epueem-2y)
S Jeq anejos
©
>
o
c
)
o

1.79

CO2 energydemand  costs

comfort

roof floor glazing draft vent heating

walls




(3)

uajisosbuliaisanu

(teelog s 3)
uajsoy aje1o |

(36}

=l _.._um._-m EEIADILLLIE AA

Performance indicators

Renovation options

(4eeZu )
Beeinsjuuepp

(eel OE ‘%)
anpnpal-tOoD)

Buwsemian) teel g / By)

jo035uNn-t0 D

(Bul|aoylano uain)
HOJWIOUBIUIAN

(Bupyanans usn)
Hojuwicolawoy

ayibje-ajuepp

aneua

FIEMESELY

se|5)

(apleem-3y)
120/ 21e|0s|

(epuEEm-0Y)

)eq anejos|

_“m?._ﬂﬂ_b:.umd__
inny ane|osj

e 3 L4 i
[ = [ [
[T+ Tl =5 (o]
it S "3 v
= = = =]
(] — (=] o O
— | L o
—
1)
L
=1 =] (=1 =) (=1 (=1 ©
&l M <+ ] ] ~ £
=
ol
o
, ==
o o o o Q
@ = m T ] ﬂ
o
h¥e
=2 in] =2 T} = Ty =]
M~ [ ] [+ ] (=3} L= o
~—
g o R e i i = e e =
o o = &l [=] & o =+ ol
~—~ ~—~ ™ Ll ~—
= o [ = )
=] =2 [=] [=
@ rs] = -._
=] [} = =
5] = Ty} — _._.ﬁU.u_ '
(o] ol = 1
[ = M1
2 E |
i
= _ ]
I ]
Cl
5] [
44}
3 2
= =
o = o
g g 5
= ] m
0
=
-
U] + 4]
] + =
o
ad
] ek A by
o o L o
— =
@ re] ] cl
[as]
] L (ns] ()]
o 15
—

CO2  energy demand costs

comfort

roof floor glazing draft vent heating

walls



Assumptions for many uncertain aspects

w- Operation &
Maintenance

Building Occupant

envelop behavior

Building Indoor
equipment environment
conditions

> | Building Performance >  Energy Use



Relevance of uncertainties

Assuming absence of modeling method errors / software bugs / user input
errors:

e “Minor”:
* Uncertain construction material and equipment properties

* Major:
e Future climate / actual weather conditions
* Future user behavior



Climate / weather uncertainties

* Actual vs typical weather data

* Climate change



HVACsource energy (kWh/m?)
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Fig. 4. Variations of HVAC source energy of the large office buildings in Chicago from year 1980 to 2009.

[Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin. "A fresh look at weather impact on peak
electricity demand and energy use of buildings using 30-year actual weather data." Applied
Energy 111 (2013): 333-350.]



Climate change scenarios (NL

Air circulation Netherlands, A guide for professionals in climate
patterns adaptation, KNMI, De Bilt, The Netherlands]
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Verkerk-Evers, J. E. J., Struck, C., Herpen, R. A. P., Hensen, J. L. M., Wijsman, A. J. T. M. & Plokker, W. 2010. "Klimatiseringsconcepten voor de toekomst", TVVL Magazine, vol. 39, no. 7/8, 22-26.



Occupant behavior uncertainties

ligthing ventilation set temperatures
heating/cooling

plug loads shading ,
- nal /external) windows/doors

time of use

hot water
moist release

influences energy consumption, indoor air
quality, illuminance, comfort,...

[IDES-EDU, 2012]



Occupant behavior uncertainties
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Occupant behavior uncertainties

3 times ™
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Energy consumption of 290 identical houses in Copenhagen, Denmark

[LBNL Building Performance Database, 2015]

[Hong, T., D'Oca, S., Turner, W. J., & Taylor-Lange, S. C. (2015). An ontology to represent energy-related
occupant behavior in buildings. Part I: Introduction to the DNAs framework. Building and Environment.]



“1984 Occupancy Uncertainty Analysis”

Low-energy houses near Amsterdam

Simulation experiments assuming small variations in
Tset, Qgain, Vent
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Fit-for-purpose occupant behavior modeling

DETERMINE TRADE-OFF
BETWEEN ESTIMATION
d UNCERTAINTY AND
APPROXIMATION ERRCR

accepted error

START

Input uncertainty

* BUILDING END
« CLIMATE FIT-FOR-PURPOSE
« PURPOSE OF MODELING COMPLEXITY

Uncertainty in input
parameters decreases as
knowledge (and cost/time
effort) increases

SIMULATION (PI)
« USE SCENARIO
PHASE IN LIFECYCLE

FOR EACH UNCERTAIN OB
ASPECT

DETERMINE SENSITIVITY OF PI
TO DIFFERENT OB ASPECTS
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Gaetani, I., Hoes, P. & Hensen, J.L.M. (2016). Occupant behavior in building energy simulation: Towards a fit-for-purpose modeling strategy. Energy and Buildings, 121, 188-204


Presenter Notes
Presentation Notes
On the left hand-side we can see how complex models do not always yield better results. In fact, while the error due to approximation decreases when increasing the modeling complexity, at the same time the number of uncertain inputs typically increases. According to the data available such input may or may not be known. For this reason, selecting the appropriate OB modeling complexity a priori is not possible. We believe that the OB modeling complexity should derive from the building under investigation, the climate, the purpose of the simulation, the use scenario and the phase in the lifecycle (diagram top right). Moreover, different aspects of occupant behavior might have a different influence on the performance indicator. The appropriate OB modeling complexity should then be defined for each aspect. The boxplots show the effect of implementing a stochastic model for different aspects of occupant behavior on the cooling energy results for 2 different buildings. the results on the left hand-side concern a building whose cooling energy showed to be sensitive to light use (this resulted from a sensitivity analysis), while those on the right are for a building which is sensitive to window and blind opening. We see that adding modeling complexity to the aspects that showed not to be determining in the sensitivity analysis is an unnecessary time/resources expenditure. While these results might seem evident, this kind of discussion is completely absent in the field of OB modeling research. 


Robustness (optimization under uncertainty)

» the ability of a system/design to have minimum sensitivity to variations in
uncontrollable factors (Taguchi, 1950; Phadke, 1989)

» the potential for system success under varying future circumstances or scenarios (Bettis
and Hitt, 1995)

» the ability of a system to continue to operate correctly across a wide range of
operational conditions (Gribble et al., 2001)

> Efbeog)utput of a system varies little when some of the inputs vary (Csete and Doyle



Robustness assessment methods

» Probabilistic approach

» Non-probabilistic approach



Probabilistic approach

» Uncertainties - probabilities known
» Mostly, mean and variance are used to assess the robustness

» Many studies are carried out on robustness assessment using probabilistic approach in
* Manufacturing/mechanical design (Caro et al., 2005; Wang et al., 2015)
e Structural design (Haung et al., 2007; Baker et al., 2008)

* Building performance (Hoes et al., 2009; Fabi et al., 2013; Gelder et al., 2014; Nik et al.,
2015)



Non-probabilistic approach

» Probabilities - not known or hard to predict

> Scenarios are formulated

» Very limited studies are available on robustness assessment using non-probabilistic approach.
* Best case and worst-case method (Hoes, 2014)
* Relative performance variation method (Kotireddy et al., 2015)

* Mini-max regret method (Bell, 1982; Averbakh, 2000; Chein and Zang, 2010; Gang et al.,
2015)



Relative performance variation method

» In the best case and worst-case method, only performance deviation is
considered as measure of robustness

» In RPV method, robust design selection is based on low median value with
minimum relative performance variation of a performance indicator for

all scenarios
= d\ ~® meax—f
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Relative performance variation method

» Conservative approach
» Does not take all scenarios into account

» Robustness assessment considering scenarios that causes maximum,
median and minimum performance

» Alternatively, mini-max regret method which takes all scenarios into
account can be used for robustness assessment method



Mini-max regret method

Mini-max* : Minimax is a decision rule used in decision theory, game
theory, statistics etc. for minimizing the possible loss for a worst case

Regret theory* : Regret theory models choice (decision) under uncertainty
taking into account the effect of anticipated regret

Mini-Max Regret Theory
» to minimize the worst-case regret

» to find a solution that performs reasonably well for all scenarios, i.e.,
solution having the best “worst-case" performance

» commonly used to find robust solutions (Averbakh, 2000; Chein and
Zang, 2010; Ehrgott et al., 2014, Gang et al., 2015)

* From Wikipedia



Mini-max regret method

Mini-max approach

Interest rates Interest rates

Return fise Static rates el Worst return
Stocks -4 4 12 -4
Bonds -2 3 8 -2
Money market 3 2 1 1
Best return 3 4 12 T '

Mini-max regret approach (regret = best return — actual return)

Interest rates ) Interest rates
Regret . Static rates Worst regret
rise fall
Stocks 7 0 0 7
Bonds 5 1 4 5

. -
........

Money market 0 2 11 11



Mini-max regret method - in context

» Define design variants (d1, d2, d3....dm) and scenarios (s1, s2, s3....sn)

» Assess the performance of designs (dm) for all scenarios (sn) using
performance indicator (P)

dl P11 P12 P13 . P1ln
d2 P21 P22 P23 v R2n
d3 P31 P32 P33

dm Pm1 Pm2 Pmn



Mini-max regret method

» Find the best (optimal) performance per scenario

dl

d2

d3

dm

Best/
Optimal
performance

P11
P21

P31

Pm1

Min(P11,
P21..Pm1)

P12
P22

P32

Pm?2

Min(P12,
P22..Pm2)

P13
P23

P33

Min(P13,
P23..Pm3)

P1n

R2n

Pmn

Min (P1n,
P2n...Pmn)



Mini-max regret method

» Calculate the performance regret (R) of a design (difference between
performance of a design and the best performance for a scenario)

dl R11 R12 R13 . Rln
d2 R21 R22 R23 . R2n
d3 R31 R32 R33 e R3n

dm Rm1l Rm2 Rmn



Mini-max regret method

» Find the maximum (worst) performance regret per design

dl R11 R12 R13 R1n Max(R11, R12...R1n)
d2 R21 R22 R23 R2n Max(R21, R22...R2n)
d3 R31 R32 R33 R3n Max(R31, R32...R3n)

dm Rm1l Rm2 Rmn Max(Rm1, Rm2...Rmn)



Mini-max regret method

» Find the design having minimum of maximum (best of the worst-case
performance) performance regrets across all scenarios i.e., robust design

dl R11 R12 R13 R1n max(R11, R12...R1n)

d2 R21 R22 R23 R2n max(R21, R22...R2n)

d3 R31 R32 R33 R3n max(R31, R32...R3n)

dm Rm1 Rm2 Rmn max(Rm1, Rm2...Rmn)
Minimum of maximum regret Rmin-max

» Maximum performance regret is the measure of robustness; the lower the
maximum performance regret, the higher the robustness



Example: performance robustness optimization

Highlights : Methodology :
C e : Future Multicriteria Selection of
> Mult-criteria performance i e
assessment N i e o @
S 25 ®
.0

Q

» Min-max regret method for
robustness assessment

S
-
Additional investment cost

o

o

h

> Multi-criteria decision

Global cost
v

Additional investment cost

220005

making N o
. . . B {f|"°...
» Robust designs for different 8 >
| —] 5 1 Additional investment cost

Min-max regret
method

n hypercube
sampling

decision makers GA based Lati
optimization

Savage MCDM
method

Kotireddy, R., Hoes, P., & Hensen, J. L. M. (2015). OPTIMAL BALANCE BETWEEN ENERGY DEMAND AND ONSITE ENERGY GENERATION FOR
ROBUST NET ZERO ENERGY BUILDINGS CONSIDERING FUTURE SCENARIOS, Proceedings of IBPSA conference, 1970-77.



Presenter Notes
Presentation Notes
Notes - methodology
The aim of the project is to develop a computational methodology for performance robustness assessment of energy efficient buildings considering future scenarios. It comprises multi-criteria performance assessment and multi-criteria decision making methods. 

In this project, performance optimization of energy efficient building designs is carried out for future scenarios to minimize performance variation across future scenarios. Robust designs, having optimal performance and minimum performance variation across future scenarios, are identified using min-max regret method.

The developed methodology is demonstrated for different stakeholders such as homeowners, policymakers and energy performance contractors. Using this methodology, stakeholder can choose a robust design by prioritizing a performance indicator and carrying out trade off with robustness of other performance indicators and required additional investment cost.

Notes –results :
The developed methodology is generic and can be applicable for all types of buildings – both new and renovations.
Active buildings (Buildings with low to moderate insulation levels (Rc= 3-5m2K/W) and large PV systems (30 m2)) are more robust and cost optimal compared to passive houses (Buildings with very high insulation levels (Rc = 10m2K/W) and small PV systems (10m2).







http://www.ibpsa.org/proceedings/BS2015/p2376.pdf

Global cost

» Cost of investment, replacement and operational
» Calculated for period of 30 years — service life span of energy systems

Performance variation across all scenarios Performance robustness (regret) across all
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(regret = performance difference between the best solution and
the solution considered for a particular scenario)


Presenter Notes
Presentation Notes
regret = performance difference between the best solution and the solution considered for a particular scenario



CO, emissions

CO, emissions = Energy consumption X EF — Energy generation X EF

» EF =CO, emission factor
» Embodied emissions are not taken into account

Performance variation across all scenarios Performance robustness (regret) across all
scenarios
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Example: performance robustness optimization

Highlights : Methodology :
. . . Fut Multi-criteria Selecti f
» Multi-criteria performance Pe”°f:;i:§§,;‘;‘:;““ess
assessment | e o |
[% i I o :
. e
> Min-max regret methOd for & i X i Additional in\mstmentcost> i
1 : |
robustness assessment — @ 1o |
C .. b | 3 ® :
» Multi-criteria decision —_ Q ; o i
. A i i Additional investment cost i
making =i 51
~ | B " i
» Robust designs for different i o | 8 e
e o [ — 1 1 Additional investment l:ost I
deCISIOn makers GA based Latln hypercube Min-max regret Savage MCDM
optimization sampling method method
Key findings :
» Active solutions are more robust compared to passive solutions
» Buildings with modest insulation and large PV systems are cost optimal robust solutions
» Buildings with very high insulation levels are prone to overheating risks in the future

Kotireddy, R., Hoes, P., & Hensen, J. L. M. (2015). OPTIMAL BALANCE BETWEEN ENERGY DEMAND AND ONSITE ENERGY GENERATION FOR
ROBUST NET ZERO ENERGY BUILDINGS CONSIDERING FUTURE SCENARIOQS, Proceedings of IBPSA conference, 1970-77.



Presenter Notes
Presentation Notes
Notes - methodology
The aim of the project is to develop a computational methodology for performance robustness assessment of energy efficient buildings considering future scenarios. It comprises multi-criteria performance assessment and multi-criteria decision making methods. 

In this project, performance optimization of energy efficient building designs is carried out for future scenarios to minimize performance variation across future scenarios. Robust designs, having optimal performance and minimum performance variation across future scenarios, are identified using min-max regret method.

The developed methodology is demonstrated for different stakeholders such as homeowners, policymakers and energy performance contractors. Using this methodology, stakeholder can choose a robust design by prioritizing a performance indicator and carrying out trade off with robustness of other performance indicators and required additional investment cost.

Notes –results :
The developed methodology is generic and can be applicable for all types of buildings – both new and renovations.
Active buildings (Buildings with low to moderate insulation levels (Rc= 3-5m2K/W) and large PV systems (30 m2)) are more robust and cost optimal compared to passive houses (Buildings with very high insulation levels (Rc = 10m2K/W) and small PV systems (10m2).







http://www.ibpsa.org/proceedings/BS2015/p2376.pdf

Mini-max regret method - summary

» Non-conservative approach

» Non-probabilistic approach-independent of probabilities of outcome-
the designs are ranked based on their worst outcomes

» Robust design performs reasonably well for all scenarios



Design optimization

* |s necessary, because buildings have a long lifetime, involve
considerable investments, impact different stakeholders, and non-
optimal design performance is very difficult to rectify by operational
optimization later on

* Because of many future uncertainties, the objective should be to find
robust design solutions that perform reasonably well for all scenarios
and stakeholders

* For innovative solutions there is no performance date yet, so physics
based computational models must be used



Operations optimization — digital twins

—

.
i

Holzkirchen To1C 412 kmth 20B% Do 241116 13:04 W 55% QL E|
[oTon =/ RK 56 '

| lLal 4752 Lan. 1143
| Lulvabsmanadiam 258 of
| Lulbamparalur 2240

| schie 5 o

[https://www.bau.fraunhofer.de/en/fieldsofresearch/smartbuilding/digital-twin.html]



Operations optimization

Example: PV fault detection & performance guarantee

Panelen 100%
|
12 stuks 95% ,105%

/ 110%

115%
3.698

kWh voorspeld

Totaal vermogen
3.900 wP

90%
Paneeltype
Suntech STP325S - A20/Wfh

Omvormer 85%
SolarEdge SE 3680H 1-fase HD

Installatiedatum

19-08-2020 80% dit jaar 1eo%
3.360 kWh
Installateur Gegarandeerd
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TU/E CAMPUS DIGITAL TWIN FOR
SMART BUILDING MANAGEMENT
AND CONTROL

Pieter Pauwels (BE), Elena Torta (ME), Gamze Dane (BE), Sonja Rijlaarsdam
(RE), Thijs Meulen (RE), and Annemieke Pelt (ME)

Build a Digital Twin system for the Atlas and Gemini buildings (Zero
Emission Lab, Gemini building)

Smart management of facilities through on-site anomaly detection and
device monitoring

Unsupervised robot navigation through semantic (model-driven) path
detection and real-time data analysis (data-driven)

Developing a 3D campus information system for digital accessibility of

campus facilities and services in buildings and open spaces

eindhoven-artificial-intelligence-systems-institute/digital-twin-lab


http://www.tue.nl/en/research/institutes/eindhoven-artificial-intelligence-systems-institute/digital-twin-lab/

Summary
V' N

Uncertainty &
Potential gap of
predicted vs

real performance

v ]} e————————————————————
Design phase Operational phase
* Prediction — long term * Forecasting — short term
* Physics based modeling e Data driven modeling / Al

* Input parameter uncertainty * Faults / non-optimal operation



Conclusions

* Building performance simulation is a very powerful engineering
technique for optimization under uncertainty

* Mind the performance gap — be aware and quantify uncertainties;
this could offer (business) opportunities

* Need knowledgeable people and intelligent approaches



Questions ?

Building Performance
Simulation for Design
and Operation

Pl b
Jan LKL HEnsén and
FabEito Lambes
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