Decarbonizing residential building energy use demand reduction optimization under uncertainty

Jan Hensen

Design stage residential energy demand reduction optimization under uncertainty

- Context
- Simulation based parametric optimization
- Uncertainties and how relevant
- Simulation based robustness analysis
- Design vs operations optimization
- Conclusions

Challenges – Netherlands context

- EU and NL 2030 2050 decarbonization goals
- NL 6 million residences/houses from different periods and corresponding building (energy) regulations
- Various renovation (energy efficiency) needs
- 60% owner occupied; 40% rental

• What are optimal renovation solutions ?

NL housing stock renovation

- Simulation based decision support
- "Classic" parametric optimization
- Typical Dutch house example:
 - Various shell renovation options
 - Various heating systems options
 - 3 Occupant behavior profiles
 - Cost-optimal solutions

approx. 10000 combinations

Assumptions for many uncertain aspects

Relevance of uncertainties

Assuming absence of modeling method errors / software bugs / user input errors:

- "Minor":
 - Uncertain construction material and equipment properties
 - •
- Major:
 - Future climate / actual weather conditions
 - Future user behavior
 - ...

Climate / weather uncertainties

- Actual vs typical weather data
- Climate change
-

Typical Meteorological Year vs Actual MY

Fig. 4. Variations of HVAC source energy of the large office buildings in Chicago from year 1980 to 2009.

[Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin. "A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data." Applied Energy 111 (2013): 333-350.]

Climate change scenarios (NL)

Verkerk-Evers, J. E. J., Struck, C., Herpen, R. A. P., Hensen, J. L. M., Wijsman, A. J. T. M. & Plokker, W. 2010. "Klimatiseringsconcepten voor de toekomst", TVVL Magazine, vol. 39, no. 7/8, 22-26.

Occupant behavior uncertainties

Occupant behavior uncertainties

Cooling energy consumption of 25 similar apartments in Beijing, 2006

Chuang WANG. Research of energy-consumption-related occupant behavior. Ph.D. Thesis, Tsinghua University, 2015.

Occupant behavior uncertainties

Energy consumption of 290 identical houses in Copenhagen, Denmark

[LBNL Building Performance Database, 2015]

[Hong, T., D'Oca, S., Turner, W. J., & Taylor-Lange, S. C. (2015). An ontology to represent energy-related occupant behavior in buildings. Part I: Introduction to the DNAs framework. Building and Environment.]

"1984 Occupancy Uncertainty Analysis"

Low-energy houses near Amsterdam

Simulation experiments assuming small variations in Tset, Qgain, Vent

Fit-for-purpose occupant behavior modeling

Gaetani, I., Hoes, P. & Hensen, J.L.M. (2016). Occupant behavior in building energy simulation: Towards a fit-for-purpose modeling strategy. Energy and Buildings, 121, 188-204

Robustness (optimization under uncertainty)

- the ability of a system/design to have minimum sensitivity to variations in uncontrollable factors (Taguchi, 1950; Phadke, 1989)
- the potential for system success under varying future circumstances or scenarios (Bettis and Hitt, 1995)
- the ability of a system to continue to operate correctly across a wide range of operational conditions (Gribble et al., 2001)

.

the output of a system varies little when some of the inputs vary (*Csete and Doyle 2002*).

Robustness assessment methods

➢ Probabilistic approach

>Non-probabilistic approach

Probabilistic approach

Uncertainties - probabilities known

Mostly, mean and variance are used to assess the robustness

> Many studies are carried out on robustness assessment using probabilistic approach in

- Manufacturing/mechanical design (Caro et al., 2005; Wang et al., 2015)
- Structural design (Haung et al., 2007; Baker et al., 2008)
- Building performance (Hoes et al., 2009; Fabi et al., 2013; Gelder et al., 2014; Nik et al., 2015)

Non-probabilistic approach

Probabilities - not known or hard to predict

Scenarios are formulated

> Very limited studies are available on robustness assessment using non-probabilistic approach.

- Best case and worst-case method (*Hoes, 2014*)
- Relative performance variation method (*Kotireddy et al., 2015*)
- Mini-max regret method (Bell, 1982; Averbakh, 2000; Chein and Zang, 2010; Gang et al., 2015)

Relative performance variation method

- In the best case and worst-case method, only performance deviation is considered as measure of robustness
- In RPV method, robust design selection is based on low median value with minimum relative performance variation of a performance indicator for all scenarios
- Performance spread

PIspread = PImax - PImin

Relative performance variation (RPV)
PI RPV = PIspread: PImedian

Relative performance variation method

➤ Conservative approach

Does not take all scenarios into account

Robustness assessment considering scenarios that causes maximum, median and minimum performance

•

Alternatively, mini-max regret method which takes all scenarios into account can be used for robustness assessment method

*Mini-max** : Minimax is a decision rule used in decision theory, game theory, statistics etc. for *mini*mizing the possible loss for a worst case

Regret theory* : Regret theory models choice (decision) under uncertainty taking into account the effect of anticipated regret

Mini-Max Regret Theory

- to minimize the worst-case regret
- to find a solution that performs reasonably well for all scenarios, i.e., solution having the best "worst-case" performance
- commonly used to find robust solutions (Averbakh, 2000; Chein and Zang, 2010; Ehrgott et al., 2014; Gang et al., 2015)
- * From Wikipedia

....

Mini-max approach

Return	Interest rates rise	Static rates	Interest rates fall	Worst return
Stocks	-4	4	12	-4
Bonds	-2	3	8	-2
Money market	3	2	1	
Best return	3	4	12	

Mini-max regret approach (regret = best return – actual return)

Regret	Interest rates rise	Static rates	Interest rates fall	Worst regret
Stocks	7	0	0	7
Bonds	5	1	4	5
Money market	0	2	11	11

Mini-max regret method - in context

> Define design variants (d1, d2, d3....dm) and scenarios (s1, s2, s3....sn)

➢Assess the performance of designs (dm) for all scenarios (sn) using performance indicator (P)

Scenario <u>s</u> Designs ↓	s1	s2	s3	 sn
d1	P11	P12	P13	 P1n
d2	P21	P22	P23	 R2n
d3	P31	P32	P33	
dm	Pm1	Pm2		 Pmn

> Find the best (optimal) performance per scenario

Scenarios_→ Designs ↓	s1	s2	s3	 sn
dl	P11	P12	P13	 P1n
d2	P21	P22	P23	 R2n
d3	P31	P32	P33	
dm	Pm1	Pm2		 Pmn
Best/ Optimal performance	Min(P11, P21Pm1)	Min(P12, P22Pm2)	Min(P13 <i>,</i> P23Pm3)	Min (P1n, P2nPmn)

Calculate the performance regret (R) of a design (difference between performance of a design and the best performance for a scenario)

Scenarios Designs↓	s1	s2	s3	 sn
d1	R11	R12	R13	 R1n
d2	R21	R22	R23	 R2n
d3	R31	R32	R33	 R3n
dm	Rm1	Rm2		 Rmn

Find the maximum (worst) performance regret per design

Scenarios Designs ↓	s1	s2	s3	 sn	Maximum regret
d1	R11	R12	R13	 R1n	Max(R11, R12R1n)
d2	R21	R22	R23	 R2n	Max(R21, R22R2n)
d3	R31	R32	R33	 R3n	Max(R31, R32R3n)
dm	Rm1	Rm2		 Rmn	Max(Rm1, Rm2Rmn)

Find the design having minimum of maximum (best of the worst-case performance) performance regrets across all scenarios i.e., robust design

Scenarios Designs	s1	s2	s3		sn	Maximum regret
d1	R11	R12	R13		R1n	max(R11, R12R1n)
d2	R21	R22	R23		R2n	max(R21, R22R2n)
d3	R31	R32	R33		R3n	max(R31, R32R3n)
			•••			
dm	Rm1	Rm2			Rmn	max(Rm1, Rm2Rmn)
	Minimum of maximum regret					Rmin-max

Maximum performance regret is the measure of robustness; the lower the maximum performance regret, the higher the robustness

Example: performance robustness optimization

Ę

Global cost

- Cost of investment, replacement and operational
- Calculated for period of 30 years service life span of energy systems

(regret = performance difference between the best solution and the solution considered for a particular scenario)

CO₂ emissions

 CO_2 emissions = Energy consumption × EF – Energy generation × EF

- \blacktriangleright EF = CO₂ emission factor
- > Embodied emissions are not taken into account

Example: performance robustness optimization

Key findings :

- Active solutions are more robust compared to passive solutions
- Buildings with modest insulation and large PV systems are cost optimal robust solutions
- > Buildings with very high insulation levels are prone to overheating risks in the future

Kotireddy, R., Hoes, P., & Hensen, J. L. M. (2015). <u>OPTIMAL BALANCE BETWEEN ENERGY DEMAND AND ONSITE ENERGY GENERATION FOR</u> <u>ROBUST NET ZERO ENERGY BUILDINGS CONSIDERING FUTURE SCENARIOS</u>, Proceedings of IBPSA conference, 1970-77.

Mini-max regret method - summary

Non-conservative approach

Non-probabilistic approach-independent of probabilities of outcomethe designs are ranked based on their worst outcomes

> Robust design performs reasonably well for all scenarios

Design optimization

- Is necessary, because buildings have a long lifetime, involve considerable investments, impact different stakeholders, and nonoptimal design performance is very difficult to rectify by operational optimization later on
- Because of many future uncertainties, the objective should be to find robust design solutions that perform reasonably well for all scenarios and stakeholders
- For innovative solutions there is no performance date yet, so physics based computational models must be used

Operations optimization – digital twins

Operations optimization

Example: PV fault detection & performance guarantee

TU/E CAMPUS DIGITAL TWIN FOR SMART BUILDING MANAGEMENT AND CONTROL

<u>Pieter Pauwels</u> (<u>BE</u>), <u>Elena Torta</u> (ME), <u>Gamze Dane</u> (BE), Sonja Rijlaarsdam (<u>RE</u>), Thijs Meulen (RE), and Annemieke Pelt (ME)

- Build a Digital Twin system for the Atlas and Gemini buildings (Zero Emission Lab, Gemini building)
- Smart management of facilities through on-site anomaly detection and device monitoring
- Unsupervised robot navigation through semantic (model-driven) path detection and real-time data analysis (data-driven)
- Developing a 3D campus information system for digital accessibility of campus facilities and services in buildings and open spaces

www.tue.nl/en/research/institutes/eindhoven-artificial-intelligence-systems-institute/digital-twin-lab/

Conclusions

- Building performance simulation is a very powerful engineering technique for optimization under uncertainty
- Mind the performance gap be aware and quantify uncertainties; this could offer (business) opportunities
- Need knowledgeable people and intelligent approaches

Questions ?

Expanded Second Edition

Building Performance Simulation for Design and Operation

> Idled by Jan L.M. Hensen and Roberto Lamberts

