

ENN's Energy Strategy towards a Climate-Neutral World

Dr. Li Quan August 16, 2022

Energy Trend

Renewable energy use continues to increase as demand for other fuels declines.

Energy consumption by major countries in 2021 (percentage)

NEW ENERGY CHALLENGE

CONTENTS

Established in 1989, ENN Group is a Chinese conglomerate committed to establishing modern energy systems and improving quality of life.

Employees:

45,000+

In-House Institutes

★ Energy Research Institute
 ★ Digital Research Institute
 ★ Institute of Life S&T

Publicly Traded Companies
 ★ ENN Energy Holdings 新奥能源(02688.HK)
 ★ ENN Ecological Holdings 新奥股份(600803.SH)
 ★ ENC Digital Technology 新智认知(603869.SH)
 ★ Tibet Tourism 西藏旅游(600749.SH)

Business Landscape

Industrial Intelligent Ecological Operation Platform

Focus on the major concerns of all industries-"safety, energy, carbon, quality"

Business Landscape

Hebei Baoding Smart City Project Langfang Lonkong Economic Zone Smart City Project Tianjin Binhai New Area IoT-based Industrial Park

Digital Intelligence

Energy business coverage 21 provinces in China Urban energy projects 52 Residential users 25.83 million Industrial users 202,400 Total annual sales of natural gas 37.2 billion cubic meters

黒龙江

-/

肉用闭印

内蒙古

河**南** •

陕西

0

四川

云南

Mongolia—— Coal Gasification Demo Projects

Dalad Banner, Inner

Shanghai, Langfang—— Micro-combustion engine manufacturing base

Zhoushan, Zhejiang— LNG receiving station Life related business coverage 5 provinces in China Scenic areas 7 Tourist routes 3 Cruises 24 Real estate projects 12

Langfang, Hebei—— Theaters, Hotels, Real estate projects

Beihai, Guangxi—— Tourism

ENN Energy Research Institute (EERI)

Team

500+ Researchers

- Founded in 2006
- ENN's innovation engine
- Committed to address humanity's energy challenges

Partners

NETL Tsinghua University Peking University

Intellectual Properties

Applied Patents 2200+ Issued patents 1600+

Innovation Platforms

State Key Laboratory for Coal-based Low Carbon Energy International Scientific and Technological Collaboration Base Post-Doctoral and Academician Work Station

•••••

From Low-Carbon to Carbon-Free: Future Energy Trends

Human activities are the primary cause of global warming.

- 1. From 1850 to 2015, atmospheric CO2 concentrations reached 400 ppm, leading to an average global temperature increase of 1 $^{\circ}\mathrm{C}$ and a sea level rise of 12 cm.
- 2. Since the industrial revolution, CO2 from fossil fuel

combustion was the primary contributor to global warming.

Data Source: 2014 Climate Change Synthesis Report, Intergovernmental Panel on Climate Change (IPCC)

Low-carbon and carbon-free energy is fundamental to addressing climate change

A global average temperature increase of 2 °C will cause disasters that may significantly impact food and drinking water supplies, threatening human lives.
 To ensure a temperature increase of less than 2 °C, greenhouse gas concentration must not exceed **450ppm**, zero emission and carbon-free energy is mandatory. China promises to reach a peak CO2 emission value where non-fossil based energy will take 20% of all power generation.

Energy 1.0: (2006-2017)

We achieved multiple innovations and scientific breakthroughs in coalbased low-carbon energy systems, the Ubiquitous Energy Internet (UEI) and advanced environmental protection technologies.

Coal-Based Clean Energy Technology:

To optimize energy structure and reduce emissions:

- ✓ Catalytic Coal Gasification to Methane
- ✓ Coal Hydrogasification
- ✓ Underground Coal Gasification
- ✓ Supercritical Coal Gasification

Ubiquitous Energy Internet (UEI):

To reduce energy consumption and improve energy efficiency

Clean Coal Gasification

Coal →Natural Gas+ Chemicals+ High Value-added Products

Suitable for different types of coal in different regions

Clean Coal Gasification

Key technologies: dense phase transport with high pressure H_2 ; high temperature H_2 - O_2 nozzle technology; entrained flow bed gasifier configuration; char dry cooling and transport technology

Ubiquitous Energy Network

UE network enables optimal supply and demand matching, efficient energy conversion, low investment capital and low-cost energy utilization.

UE Projects Across China

Economic and Technological * National Demonstration Project of * National Demonstration Project of Development Zone of Langfang Sino-German Ecopark in Qingdao Economic and Technological

Development Zone of Wenzhou

★ The First UEI Demonstration Project in China Micro-Grid UEI Demonstration Project in Langfang

★ National Green and Ecological Demonstration Area Economic& technological Development Zone of Zhaoqing

★Data Center Alliance and Green Grid 5A Certified
Cloud Computing Center of Tencent

Energy Transition to Carbon Neutrality (Energy 2.0)

Research Areas

To Embrace a Carbon-free Future with Disruptive Innovations

Energy 2.0 — Fusion

Fusion is a nuclear reaction in which some light nucleus fuse with some other light nucleus, while releasing abundant amounts of energy.

EXL-50 Proof-of – Principle Experimental Platform

Parameters	Technical Goals
Plasma Current I _p	500 kA
Toroidal Field B_T	0.46 T
Major Radius R	0.58 m
Minor Radius a	0.41 m
Elongation k	1.8-2.2
Triangularity δ	0.1-0.4
Plasma Density	10 ¹⁹ m ⁻³
Ion Temperature T _i	1 keV
Pulse Length t _d	5 s

ENN has designed and built the first medium-scale Spherical Tokamak experimental device EXL-50. On August 8, 2019, the first solenoid-free plasma discharge was produced on "EXL-50 ".

EXL-50 Proof-of – Principle Experimental Platform

ENN Compact Fusion Timeline

Conc	luct Scientific Feas	ibility S	Study Addres	s Engine	ering Challenges	Improve Cost Effectiveness
	Phase I: Screening &evalu (2-4yrs)	ation	Phase II: Physics validation (10-12yrs)	Ph on Pro (!	ase III: oject demonstrati 5-8yrs)	Phase IV: on Industrial Demonstration (5-8yrs)
2	 Create technology roadmap Investigate confinement concepts Conduct experiments on small and medium-sized fusion devices Build a multidisciplinary team 	2022	 Theory validation on experimental platforms Develop key skills Collaborate with experts around the world to solve challenging technical problems 		 Continue to tackle technical issues Develop power generation solutions 	Achieve cost-effective power generation
	• Identity Key technical problems					22

Explore P-11B Fusion based on Spherical Tokamak

Deep Geothermal Energy

Geothermal heat is a renewable energy resource from deep within the Earth's core caused by radioactive material decay and is transferred by molten magma and intense pressures to crust.

Predicted by BP, geo-thermal will weight 3rd of all energy consumptions globally in 2050

Enhanced Geothermal & Carbon-capture System (EGCS):

- ✓ Deep geothermal energy (300°C-450°C)
- ✓ At depth of 3km-10km
- ✓ Medium: supercritical CO₂

Deep Geothermal Energy

Resource exploration and site selection

- Developed fractures monitoring and imaging technology
- Site selection and evaluation techniques for the formation of hot dry rocks
- Regional tectonics and geothermal geology;
- High temperature geothermal geophysical exploration

Advanced energy drilling

- The first energy drilling laboratory in China
- 9 types of steam plasma torch prototype
- Steam plasma torch 50KW, 200hours

Micro-seismic monitoring

Deep Geothermal Energy

High temperature rock true-triaxial lab

- 300°C×100MPa (up to 400°C)
- Rock mechanical characteristics, fracturing mechanism, tools, materials and CO2 geological storage under high temperature and pressure

- To increase the complexity of the fracture system, fractures are generally segmented.
- ENN is the first company capable of offering high temperature temporary blocking agent (150°C, 180°C, 200°C, 250°C, 300°C)

Advanced Energy Materials

Main research areas:

High Temperature Superconducting Technology

Thermoelectric Materials

Fusion Materials

Cathode Materials

1	1				70		它非全层			-11.00								2
1	H			1720	79		04F2/4			24284								He
	3	4		Aι			2.04			以設置用			5	6	7	8	9	10
2	Li	Be		金		62	土釜属			后过渡到	2.046		В	С	Ν	0	F	Ne
	11	12	19	6.966	569		有气体			镧系元素	¢.		13	14	15	16	17	18
3	Na	Mg	2-8	-18-32	-18-1	#	金属			铜系元素	ŧ		AL	Si	Р	S	Cl	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
-	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
-	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
6	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La-Lu	Ht	Та	w	Re	Os	Ir	Pt	Au	Hg	π	Pb	BI	Po	At	Rn
7	87	88	89-103	104	105	106	107	108	109	110	- 111	112	113	114	115	116	117	118
8	Fr	Ra	Ac-Lr	Rt	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FL	MC	Lv	TS	Og
										对	于没有稳	定同位素	的元素,	括号中	星其半衰	期最长的	同位素的	质量数
				57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

High Temperature Superconducting Technology

ENN focuses on the research of high-temperature superconducting magnet technology for fusion, including large-scale high-temperature superconducting magnet coil technology, compact central solenoid technology, cable and conductor technology, coil internal and inter-cable joint technology, quench detection and protection technology, etc.

LTS fusion device

Advantage:

With the same fusion power, the volume of the HTS device is significantly smaller than that of the LTS device.

HTS fusion device

HTS conductor, joint

HTS magnet test platform

HTS coil

HTS fusion device

Fusion Materials

Wall conditioning and fueling technique

We focus on suppression of impurity and recycling reduction, while explore fueling technology for Hydrogen-Boron reaction. Our boronization technology provides a guarantee for EXL-50 experiments, while boron particles injection technique fosters the promotion of plasma parameters

EXL-50 wall after boronization

Plasma-facing material

The mechanism of plasma-wall interaction process is key to solve the fusion materials issue. We conduct research on PWI and develop new materials for fusion reaction based on the Plasma linear device.

PWI equipment

Boron nuclear target

We use magnetron sputtering method in PVD and CVD equipment to prepare nano-scale to micro-scale self-supporting boron targets, which has been used in hydrogen-boron fusion physics verification experiment.

Boron target fabrication equipment

Thermoelectric Materials

ENN is the first enterprise in China to develop thermoelectric technology at medium/high temperature (400~600 °C).

Advantages

- Direct conversion of thermal ٠ energy and electric energy
- All solid, no noise, fast ٠ response, no moving parts and harmful working medium , multiple heat sources

Ability

- Full process preparation and test
 - Customers include energy, vehicle and other scientific research institutes

Application

- Space probe power
- Deep sea exploration • power
- Industrial waste heat power generation
- Automobile exhaust • power generation
- Island power
- Refrigeration

35 30

≥ 25

• 600℃ • 550°C

500°℃

400℃

Cathode Materials

The service life of cathode materials used in high-temperature steam plasma torches(at 200 kW) has reached 370 hours.

3D model of plasma torch

Characteristics

- Heat and hot electron emission obtained
- Low electron work function, high oxidation resistance, low evaporation, good thermal conductivity and conductivity.

Ability

- Full process preparation and research of cathode materials, good at powder metallurgy and refractory metal smelting
- Strong process stability, long service life, strong electron emission ability and high arc stability

EPT00

Application

- Deep geothermal drilling
- Hazardous waste treatment
- Plasma cutting
- Plasma spraying
- Refractory metal smelting
- Preparation of nanomaterials

EPT04F

Open Innovation

Innovation and collaboration is in our DNA. In partnership with preeminent universities, research institutes, governments and companies, we proactively seek ways to make a significant and sustainable impact.

Global R&D Trends - Openness and Innovation

Taking the StreetScooter company as an example

Key Technologies Readiness Assessment

TRL of high temperature superconducting magnets

Ba	asic Scientific Researc (Research institutes)	h	 Core Technology (Can be applied across industries) 	Mature Supporting Technology (market)
Strip Processing	Stress Fatigue	Accurate Modeling	Superconducting Cables and	Vacuum Refrigeration
AC Loss	Antimagnetic Properties	Induced Eddy Current	Connectors	Power Supply
Critical Temperature	Thermal Properties	Critical Current		Mechanical Support
Dynamic Loss	Electromagnetic Measurement	Quench Analysis and Protection	Coil Winding	Status Monitoring
Transient Analysis	New Superconducting Material	Finite Element Calculation		Hardware Test
	material	Skin Effect		Software Support
Independent	Technology			
	muouucuon			36

Build a Resource Ecosystem

Manufacturing Ecosystem

- Strip
- Cable
- Conductor/connector
- Feeder
- Low temperature
- Vacuum/pump
- Power Supply
- Screen/Dewar
- Support system

Develop procurement plans according to demand time and integrate systems

Conferences& Events

Contact:

Dr. Li Quan (liquanh@enn.cn)

Vice President of ENN Energy Research Institute, Director of ENN Advanced Materials R&D Center