

Decarbonization of the transport sector: The application of low and zero carbon fuels in internal combustion engines

Dr. Jinlong Liu Power Machinery and Vehicular Engineering Institute Zhejiang University Email: <u>Ijl199022@zju.edu.cn</u>

2022.08.18

2. Internal combustion engines

3. Natural gas engines

4. Ammonia engines

5. Future research directions

6. Summary

7. Acknowledgement

Content

Climate change: the long road to a global deal

CO₂ emissions intensity of primary energy demand relative to CO₂ emissions per capita by country/region, 2000 and 2020

China's Long Road to Carbon Neutrality

Emissions from consuming fossil fuels, million metric tons of CO2

CO₂ emissions from existing energy-related infrastructure under typical lifetime assumptions and operating conditions in China

2. Internal combustion engines

• Stationary applications

2. Internal combustion engines

- Internal combustion engines (ICEs) are **not** a source of pollution
- Emission pollution from internal combustion engines comes from fuel combustion
- The application of low-carbon fuels in ICEs can help reduce greenhouse gas emissions
- Applying zero-carbon fuels in ICEs can help eliminate carbon-based emissions

electrical power)

2. Internal combustion engines

Natural gas (NG) fuel properties

- The main component is CH₄
- A higher H/C ratio
- Abundant, low cost

Poland

187

5.8

India 2008: 81 TWh 2035: 410 TWh Australia/New Zealand 2008: 48 TWh 2035: 139 TWh

MIDDLE EAST/AFRICA Middle East 2008: 428 TWh 2035: 1,072 TW

Africa 2008: 170 TWh 2035: 587 TWh EUROPE 0ECD Europe 2008: 841 TWh 2035: 1,352 TWH Non-OECD Europe

2008: 627 TWh 2035: 766 TWh

0.8

0.7

- The benefits/challenges of natural gas (NG) engines
- Lower emissions (CO₂, soot, NOx, CO, UHC)
- Higher compression ratio and lean-burn limit can increase thermal efficiency
- NG composition varies with geographical source, time of year, and treatments applied during production and/or transportation
- The non-methane compounds in the NG can have a strong influence on the engine efficiency and emissions

1.3

1.2

1.1

1.0

Equivalence Ratio

Rich

- Natural gas (NG) spark ignition (SI) engines
- Lean or stoichiometric operation?

Natural gas (NG) spark ignition (SI) engines

14

Natural gas (NG) spark ignition (SI) engines

 新ジネス学 A D D N M R D A M

Natural gas (NG) spark ignition (SI) engines

Natural gas (NG) spark ignition (SI) engines

Natural gas (NG) spark ignition (SI) engines

18

Natural gas (NG) spark ignition (SI) engines

Natural gas (NG) spark ignition (SI) engines

- Lean or stoichiometric operation?
 - ✓ Lean: Stationary applications
 - ✓ Stoichiometric: On-road vehicles

Pilot diesel ignition natural gas (NG) engines

• Natural gas/diesel fuel proportions?

Pilot diesel ignition natural gas (NG) engines

• Natural gas/diesel fuel proportions?

 新ジス学 JHE JIANG UNIVERSITY 动力机械及车辆工程研究所 Institute of Power Machinery and Vehicular Engineering

Pilot diesel ignition natural gas (NG) engines

- Natural gas/diesel fuel proportions?
 - ✓ Methane slip
 - ✓ Low load low speed conditions

Ammonia fuel properties

- Easy to store and transport
- Mature production facilities
- Unfavorable combustion properties

Green ammonia - production and use

The benefits/challenges of ammonia engines

- Lower carbon-based emissions
- Slow laminar flame speed reduced efficiency, high cycle-to-cycle variations
- Higher ignition energy
- Fuel NOx

Ammonia spark ignition (SI) engines

• Hydrogen addition?

Performance	CH ₄	NH ₃
Ignition lag [°CA]	12.0	16.0
DOC [°CA]	60.6	62.8
IMEP [bar]	9.28	8.46
ISFC [g/kW·h]	188.6	505.5
ղ _{th} [%]	37.9	37.1
η _{comb} [%]	98.3	95.0
ISNO [g/kW·h]	7.86	4.07
ISNO ₂ [g/kW·h]	0.0014	0.0013
ISN ₂ O [g/kW·h]	/	0.03
ISNO _x [g/kW·h]	7.86	4.10
ISCO [g/kW·h]	5.80	/
ISCH ₄ [g/kW·h]	0.70	/
ISNH ₃ [g/kW·h]	/	11.62
ISH ₂ [g/kW·h]	0.26	0.35

25

Ammonia spark ignition (SI) engines

• Hydrogen addition?

Ammonia spark ignition (SI) engines

• Hydrogen addition?

Ammonia spark ignition (SI) engines

• Lean, stoichiometric, or rich operation?

Ammonia spark ignition (SI) engines

• Lean, stoichiometric, or rich operation?

Ammonia spark ignition (SI) engines

• Lean, stoichiometric, or rich operation?

Pilot diesel ignition ammonia engines

• Ammonia/diesel fuel proportions?

Power Contribution from Diesel Fuel (%)

Pilot diesel ignition ammonia engines

• Ammonia/diesel fuel proportions?

Pilot diesel ignition ammonia engines

• Ammonia/diesel fuel proportions?

34

Pilot diesel ignition ammonia engines

• Ammonia direct injection?

5. Future research directions

- Efficiency enhancement
- Co-optimization of fuels and engines
- Powertrain hybridization
- The application of carbon-neural fuels
 - ✓ Hydrogen
 - ✓ Synthetic fuels: made by chemically hydrogenating carbon dioxide
 - ✓ Biofuels

✓ E-fuel

• NG SI engine: stoichiometric for vehicles, lean for stationary applications

• NG/diesel dual fuel engine: to avoid low load conditions because of methane slip

• Ammonia SI engines: stoichiometric operation, hydrogen addition

 Ammonia/diesel dual fuel engine: combustion strategy optimization to reduce NH3/N2O

7. Acknowledgement

- Program SEEEP High Level Summer School
- Zhejiang University