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He Il and Quantum hydrodynamics




Specificity of helium and superfluid helium (He Il)

® Lowest melting and boiling points of all the elements.

® Helium does not solidify at atmospheric pressure.

102 I i I
101 =
s - HE‘I —
g I ;
;100 | Critical ]
= oint
2 - He-ll s
o I .
o :
107 [ Helium gas ~
I A point: 2.17 K ]
1[]'? R AR | [N ([T
o 1 2 3 4 5 6 7
(a) Temperature (K)

Shiran BAO — Helium cryogenics for superconducting cooling



Superfluid helium (He Il) as a coolant

There exist two components in He Il:

® Superfluid component (condensate)
® Normal-fluid component (excitations)

Density = Velocity | Viscosity = Entropy

Superfluid pS(T) VS(I') 0 0

Normal fluid = p, (T) v,(r) n, (T) S, (T)
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Quantum and classical turbulence in He Il

® Superfluid turbulence is a random ® Turbulence in normal fluid can be
tangle of quantized vortices. affected by the quantized vortices.

Quantum turbulence Classical turbulence
Each vortex has the same conserved Quasi-particles can interact with
circulation. QT is thus simpler to model vortices = origin of many peculiar
than classical turbulence. hydrodynamics in the two-fluid system.
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m Quantum hydrodynamics: (1) Above 1 K (two-fluid regime)

® Heat transfer in He-ll is by counterflow :
the superfluid moves towards the source of heat;
the normal fluid flows in the opposite direction, carrying thermal energy.
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Turbulence in counterflow can
affect the heat transfer |
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Quantum hydrodynamics: (2) Below 0.6 K: (Pure QT)

® At low T when there is no normal fluid, the decay of QT energy at scales smaller than
vortex spacing is believed to be via Kelvin wave cascade.
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Do we really have a complete understanding of counterflow?

Taylor-Couette , 4
flow engine |} [i
g/

Transformative Visualization
Techniques

\

= He ll: two-fluid ) e
system

Quasiclassical
flow

Challenging problem: Challenging problem:
Understanding the novel | |Characterizing the
normal-fluid turbulence emergent properties of
in counterflow quasiclassical flow

® Challenge: many tools developed for classical fluids are not applicable

We need tools that allow independent quantitative flow
measurements in the two-fluid system!

Shiran BAO — Helium cryogenics for superconducting cooling



@

Flow visualization studies in He |l




PIV/PTV techniques using micron-sized tracers

® Particle imaging velocimetry (PIV) with polymer microspheres, solidified

hydrogen ice particles

Cross section :
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PIV/PTV techniques using micron-sized tracers

® Particle tracking velocimetry (PTV, with hydrogen isotopes ice particles)

Direct visualization of
guantized vortices:

Particles are observed
to bind on vortex lines
due to Bernoulli’s effect Bewley, Lathrop, and Sreenivasan Nature 441, 588 (2006)
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PIV/PTV techniques using micron-sized tracers

® Our recent progress with PTV in He Il:

1) Thermal counterflow:
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PIV/PTV techniques using micron-sized tracers
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PIV/PTV techniques using micron-sized tracers

® Track length of the G2 particles = vortex spacing

Track length of G2 can be used to
determine the mean free path, s, of the
particles through the vortex tangle:
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Result agrees very well with 2" sound
measurement
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B. Mastracci and W. Guo, submitting to Phys. Rev. (2018)




PIV/PTV techniques using micron-sized tracers

2) PTV in grid turbulence:

Grid speed: 30 cm/s, T=2 K

B. Mastracci and W. Guo, Rev. Sci. Instrum., 89, 015107 (2018)

® Particles are expected to trace the coupled flow in grid turbulence.
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PIV/PTV techniques using micron-sized tracers
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B. Mastracci and W. Guo, to be
submitted to Phys. Rev. (2018)
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m MTV method using Metastable He,” excimer molecules

® Some issues of PIV/PTV method:

1. Particles have a wide size distribution and non-spherical shapes; they are not
neutrally buoyant; they can form large clusters.

2. Particles interact with both the normal fluid and the vortices. Tracer behavior is hard
to interpret.

® Metastable He,” molecules can be easily produced as a
result of ionization or excitation in LHe4:

e + He*+He > He* + He —» He*,
singlet state  alX}! lifetime: ~1ns

triplet state 3%} lifetime: ~13s

® Above 1K : molecules trace the normal-fluid
component only.

(D. Zmeev, et al, Phys. Rew. PY

Below 0.5 K : molecules can be trapped on vortex
Lett., 110, 175303 (2013))

lines
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Imaging He,” molecules: Laser-induced fluorescence

c}; t=3s t=4 s t=5s
% Guo, et al., J. Low Temp. Phys., 158, 346 (2009)
3
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y A {mmj) 0
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o

W.G. Rellergert et al., Phys. Rev. Lett, 100 (2008).

For molecules in the triplet ground state a(0):

® A 905 nm pulsed laser is used to drive a cycling
transition.

t=40ms t=80ms

Guo, et al., Phys. Rev. Lett. 105, 045301 (2010).

® Fluorescent light emitted at 640 nm.
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Imaging He,” molecules: Laser-induced fluorescence

Femtosecond laser field

ionization in helium: Pulse length: 35 fs

e

[ > 1013 W/cm?

Pulse energy: up to 4
mJ

Rep rate: up to 5 kHz

2m, fs-laser Superfluid helium
beam (below breakdown)

905 rl;;ns focusing lens: =75 cm

(a) LIRS U (b) T=1.83 K; P=SVP

5um

Helium vapor Helium vapor

f=50 cm ®,~35um g =20 cm Do~11UMm W. Guo, et al., PNAS, 111, 4653 (2014
N e uo, etal., , , ( )

® Thin tracer lines can be produced and tracked,
(with camera zoomed in) allowing high precision flow field measurement.

(c) T=4.2 K; P=1 bar (d) T=4.2 K; P=1 bar

® This technique is applicable to He Il, He-l, and

J. Gao, et al., Rev. Sci. Instrum. 86, 093904 (2015) gaseous helium.
21 /61
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MTV study on steady counterflow in He Il

® Three distinct velocity profiles of the normal fluid were observed.

No heat flux Heat flux: 10 mW/cm? | Heat flux: 62 'm_W_/cm2
i Drift time: 900 ms Drift time: 150 ms

LHe bath

9-shot average 9—sh_ot a'verége A

MRS Heat flux: 75 mWiem? | Heat flux: 200 mW/em?
VS Drift time: 100 ms Drift ime: 40 ms =

2nd sound fs pulse

transducer (800 nm)

Planar heater _ :
9-shot average ' single shot

(a) (b) i

A. Marakov, G. Jian, et al., Phys. Rev. B 91, 094503 (2015).

® Recent simulations suggest that the
mutual friction near the wall may
flatten the profile of the normal fluid.

A. W. Baggaley and S. Laizet, Phys. Fluids 25, 115101 (2013) =
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MTV study on steady counterflow in He Il

® The velocity PDF in turbulent normal fluid is found to be a Gaussian. The turbulence
intensity is higher than classical channel flow:
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® The 2nd order transverse structure function revealed novel form of turbulence

S (R, 1) = {(u(R + 1) —u(R))?) ) .
10°1 TR J\,&:& .»;\c.\__‘f
- u(x) 2 u(x+r-) ] A7 o, 48
T I L < & ¥ Mo,
S;(r) <r™ 4y E(k) o k=D Pl chis © g :.ﬂ_ ol — 8 {D o %%*b
iy '| S0 8 @
4 4 300 mW/cm?
‘ E(k) « k=2 3 ’ 0 200 mW/cm?
single shot 0 —
0.1 1 10
S. Bao, W. Guo, et al., Phys. Rev. B ¥ (mm)

98, 174509 (2018).

A. Marakov, J. Gao, et al., Phys. Rev. B 91, 094503 (2015).
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Defects location on SRF cavities by MTV




m Superconducting radio-frequency (SRF) cavities

Vacuum insulation \

® SRF Cavities Applications:

Vacuum High Energy Physics: LHC, CEBAF;
Radiation Sources: XFEL, ERL;
Nuclear Physics: ATLAS, TRIUMEF,
SNS, EURSOL;

He pumping port Upcoming: ESS, FRIB, PIP-II ...

T. Khabiboulline, Engineering for Particle Accelerators, (2017).

® SRF cavities are key components in many
modern particle accelerators due to their
high Q factors.

® The maximum acceleration gradient is
limited by the ‘quench’ of SRF cavities.
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m Superconducting RF cavities and surface quench spots

® The quenching spot causes
transient heat transfer into He Il
(=1 ms, 1-10 J).

® The maximum achievable field can
be improved by removing the
surface defects by mechanical

grinding, tumbling the cavity, and
electron or laser re-melting.

\

Defect ®

Vacuum Precise location of the hotspots is

prerequisite for a successful repair.
Defect Pit

Typical defects images captured by Cornell University and DESY
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Existing methods: (1). Temperature mapping

Surface T-mapping Rotational T-mapping

Fermilab

® |[nstallation and ® Low sensitivity due to
maintenance required for the gap between the
over 1000 temperature sensor and cavity A
sensors and wires. surface. Conway, et al, Cornell University

——
50.0 um

® Conducted just below the quench threshold. At least 2 cool downs and reconfiguration

of the sensor are normally needed for good accuracy
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Existing methods: (2). 2"9 sound trilateration

3 T T T T
o Quench I He-II bath Temperature = 1.7 K
| Cavity Stored f I'. Second Sound Wave Velocity = 2004 m/s
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Conway, et al., Supercond. Sci. Technol. 30, 034002 (2017).

® Hotspot leads to emission of 2nd sound waves in He Il.

® Converged location can have an uncertainty of 5-10 mm.

® Convergence of the signals requires a 2nd sound speed
different than known value.
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Possible non-contacting detection via flow visualization

Counter flow - ® Accurate non-
IS¥A Quantized vortex lines § P contacting detection
) 1
~——~ 2n und front = i : P :
siEslLehiL - by flow visualization in
seesee Tracer-line 05 0 0.5

Time (ms) He ||

Baseline A

/" 7\ Cavitation zone

® Particle tracking

|

Heater PCB plate

0.8x0.8 mm?
LHe bath (1.85 K)
Heat transfer & flow process following a transient point-like heat pulse

® A heat-induced counterflow carries detailed information of ® Molecular tagging
the heating source: amplitude, duration, size... velocimetry (MTV
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Proof-of-concept experiment using SMD heaters

Deformed tracer line

Baseline

v Imaging laser (905 nm)

and re-pumping lasers
0 Femtosecond pulse
X (800 nm)

Resistance array welded on PCB

® An array of thin film resistors (50 Ohm, 0.8x0.8 mm?).

® The PCBis in He Il at controlled temperatures (1.85 K).

® A voltage pulse (1-8 ms) is applied to a chosen heater
(78-287 W/cm?).

S. Bao and W. Guo, arXiv:1812.07080 (2018)
(submitting to Phys. Rev. Applied)
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m Typical baseline and deformed tracer-line images

g, =287 W/cm”

At =2 ms

s T mm T=1.85 K

Deformed line:
(£; =30 ms)

Baseline:

hi |
Heater Heater
. - Af i
I () s_ o3, 3 [T 5 3Qs
di* =t~ dt = psT - dt Iy =1g + 2mpsT ./tD Qsdt =15 + ST

® Two fitting parameters:

1) The location of the heater: x, 2) The total energy carried by second-sound: Q,
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m Fitting results of the heater location

® The obtained X, is always within a few
hundred microns from the actual
heater location, clearly proves the
feasibility of this novel technology.

IEF —— /1=1.02 mm
h=2.13 mm
h=331 mm
10 g, =287 W/ecm’
At =2 ms

12

y (mm)

0O 2 4 6 8 10 12 14
x (mm)
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m Possible origin of the “fast” second sound

. ® The size of this cavitation zone is

0.6 o ° 8 estimated based on the knowledge
§ i . © obtained about the transported heat.
= © (15 W/cm? threshold is selected)
;\b

0.4

° At =5 ms
0.3 L] ] L] 1 ]
50 100 150 200 250 300 350
5 T T T T T T T T ¥ T

(a) q, (W/em”) 1.4 . |

St A7
S osdl "

® A new explanation for the decades- ol®
long puzzle observed in previous 0.8 ) Our prediction: @ -
second-sound triangulation . 2 . - Tria?gU|.ati0ln d?tai lA
experiments is proposed. 0 100 200 300 400 500
(b) qo (W/sz)
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Our long-term goal:
Rotational quick scan of real cavities

Cavity mounted on a
rotating holder in He I

Vacuum

ICCD camera-1

Quench spot \
\
t
a® M
- T
ICCD camera-2 fs-laser

beams
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3D imaging of tracer-lines and quench spot detection

. LHe Il

Second sound detector /F“\'\

e :
e Imaging laser

e
/ Femto-second laser

Pressure sensor ®
'.
4

Temperature sensor (T) ¢ -
',' He tracer line

Niobium plate

Vacuum

Camera

Test experiment:

3D imaging of 2 tracer-lines




3D imaging: Stereoscopic MTV experimental setup

® We built up a stereoscopic MTV system to capture
the 3D profile of the tracer line for detecting a hot
spot on a 2D surface.

Imaging To helium bath Thermal
laser sheet | . . - .y | shields

fs-laser

\ AN

Helium

chamber . \~

He;
tracer-line

.
7
: B s
i 2
¢
. 4
s
‘ J
! '
+ /
; #

Heater

Vacuum
shield

(a)

S.R. Bao and W. Guo, Int. J. Heat Mass Transf., 161, 120259 (2020).

<= Camera 1
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3D imaging: Reconstruction of the tracer-line profile

(a) Baseline (b) Drifted line —— Drifted line
Baseline
4+ Heater center

® s M3

y (mm)

N P
Heater Fiber markers

T

2.5mm
e
< -

= 3.5mm
Q 8
>
< p
) Z) 4 &
v) ,))/' 2 % -8 '\u\
e
£
h ® Tracer line is created at
> about 4-5 mm away from the
g heater center.
- = ; .
S L ® Reconstruction is performed
B q,=205.71 W/em®
oD based on the marker

positions.

x (mm) x (mm)

Shiran BAO - Helium cryogenics for superconducting cooling



m Simplified model based on the discretization of heater

® In the current experiment the heater
size is increased by nearly nine times in
order to better represent a quench
spot, which makes the point heat-
source model inapplicable.

Quantized vortices

Boiling zone Counterflow

2nd sound

_ / zone
| \ Tracer-line

| X
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® We divide the assumed heater into
nxm small elements and treat each
element as a standalone point heat
source. The velocity of a tracer-line
segment located at r:

v, ) =Y > v t=) ¥ q;js(]t')

=T §=1 i=1 j=1

qij(t) =Qj(©)2nR?,  Rij=|r;—r]

® The heat transfer rate is given by:

0 Col < R,j

: A

Qj(t) = 1%L Rij<ct <Rij+cAt
0 C2t>Rf1j+C2At




Ao Cal. center

Simplified model based on the discretization of heater

-+ Real center === Cal. centerline
,1.' ““““ s ¢ : “h“ff‘s\.
I" < 4 1 a . - t\\\
\ iy 7 ¢ i
\\\ - ."_0:/ i X ,’r
Heater
Sgl. Avg. Sgl. Avg.
e O 18.4V « O 300V
A 23.6V « o 36.8V
= O 266V -+ Heater center
~1 0 1 2
x (mm)

® Our analysis nicely reproduces the heater center with an uncertainty of a few hundred

microns (a few percent of the heater size), regardless of the applied heat fluxes.
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Vacuum loss in LHe cooled tube




@ Particle accelerators composed of LHe cooled cryomodules

Q’S& Cryomodule

S-call alliptical cavity il

Vacuum insulation - f
\ (1 B i

%e"”(o

=3 e
V ' = L ’
ACuym U ey Qoo PO

He pumping port

Shiran BAO — Helium cryogenics for superconducting cooling



@ Vacuum break in large-scale particle-accelerator

® A sudden catastrophic loss of vacuum is one of the most
serious failures in LHe cooled particle-accelerator systems

) = Loss of vacuum insulation leads
Insulation _ ,
to explosive boiloff
vacuum space :
= Equipment damage

(usually isolated = Personnel injury

| o 0
per cryomodule) = Oxygen deficiency ® Example: LHC, CERN 2008

Vacuum = Gas propagating in the beam = Beam tube vacuum
beamline tube could affect the entire failure
= 53 cryomodules
(interconnected to ' system .
o contaminated/damaged
create a beamline = Introduce contamination to the _
6 tons helium lost

up to kilometers) inner surface of cavities

= 6 months to repair

Developing a clear understanding of the complex dynamical heat and mass transfer
processes involved following a sudden vacuum break is of great importance for the safe

operation of accelerators.
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@ Early experiments in a straight tube immersed in He |

® Early experiments conducted in straight tube
immersed in He | by Dhuley and Van Sciver in
our lab confirmed the slowing down
propagation

How to measure the gas front in
cryogenic temperature?

Pressure Sensor Temperature Sensor

Stycast™ €epoxy

ventun tube

Copper
solenoid valve a&]ﬁzm tape
SV T ump-out port H
L = top plate T Kulite® probe
— || . to recovery/ .
M s relief - A1 6061 rod
(heat sink)
o0 extension tube
gas tank #1 (SS)
A
qH uid helium
>0
#2 5
A 151 30 i forward
B forward : | propagation L
€ 1EVEl STIC. . propagation i i )
LHe level stick 40
g pressure probe - £ - [ | station 41
(inside the tube/gas tank) NE \ E 10{: 1 uniform g > |
-2 pressure rise 301 -
» thermometer #3 vacuum tube b il Ll g}tﬁpm;ﬁf,i
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@ Early experiments in a straight tube immersed in He |

® Dhuley and Van Sciver attributed the exponential slowing of the gas front propagation
to gas condensing and freezing to the walls. They proposed a simple model based on
conservation of mass analysis in one dimensional tube flow.

* measurement
1r empirical fit: ¢ = a(e®/* — 1)
0.8 _
— Conservation of mass model:
5 06 r
g% s — i / ity (X, £) dX
E Azl _ 0
5 04r At nD?
—Pla
4
02}
0 . ; ; , , ,_
0 0.25 0.5 0.75 1 1.25 1.5

location, X [m]
Int J Heat Mass Transf 2016;96:573-81; Int. J. Heat Mass Transf 2016;98:728—-37

Shiran BAO — Helium cryogenics for superconducting cooling




@ Modified experimental setup using a helical tube system

— == ; PR
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He 11 l

LHe Level Sensm‘/ |

Helical Copper Tube /

Cernox®
Sensors

I

oo

[
|

Bath Temperature __ -
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15"

Shiran BAO — Helium cryogenics for superconducting cooling



@ Typical result for gas propagation in He | and He Il cooled tube

48 T T o
; He! || —=dl Temperature over time curves at
47 : ---T2l . .
; ~T3 different sensor sites
46 : AL
< . —T5
s ' =aTg
Baspe: !y o1} B T7[]
@ ! | i —T8
3 44f| I |
s M
~a43H . . . .
43 WMM\ Threshold level Risetime over position for
Ak Rise time I He | and He Il experiments
41 L L L L L L
0 500 1000 1500 2000 2500 3000 3500 3000 1 ? 1 ' T
Time (ms) Empirical fit: f(x) = a(e"/b-f)
2500 H * Data : He | non-insulated A
Empirical fit : He | non-insulated W s
2.8 ; ¥ N ! : T L m # Data : He | insulated ’,','
; ; :E E 2000 H- - ~Empirical fit : He I insulated il
= = Data : He |l non-insulated Fav
i -+ T3 .o ! #
26 He-tl-.m W2 e | Empirical fit : He Il non-insulated ’,:4,' §
o — 75 @ 15001 o Data : He Il insulated F T I
§2.4 i ---Is = ---—=Empirical fit : He Il insulated o
2 |: b i g,f:, 1000 -
@ : - —
S22 : . A transition L=—T8ath
@ ' I | i B T 500 -
= | ol
H ==
211 -{- ‘M/ Rise time L
r p e ! H 0
i 5 6
1.8k L ' ' 1 1 L Position, x (m)
0 500 1000 1500 2000 2500 3000 3500
Time (ms) Cryogenics 2019; 100, 92-96.
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@ Exponential slowing down of the condensable gas

® A 1-D finite deference model that systematically describes the fluid flow, heat transfer
and mass deposition of a propagating and condensing gas inside a liquid helium cooled
tube has been established.

l€— 057 m —>| 5.88m >|

» N2 Gas :’I :‘I High vacuum 1inch +

298 K Open outlet
m(0, 0)=18.3 g/s /
Stainless steel tube Tube heated by gas Slowing front
N2 Frost layer Convection/Boiling Copper tube

GN2 is treated as an ideal gas: PM,; = p,RT, viscosity and gravity are neglected ;

An experimentally measured initial temperature profile is used for the insulated inlet section;
Steady-state heat transfer in LHe as the onset time of film boiling is very short;

The inlet mass flow rate is determined based on the measured pressure change in the tank;

The GN2 flow velocity assumed to be at the local speed of sound at the inlet.
46 / 61
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@ Numerical model — Mass, momentum, and energy conservation

® The equations that describe the gas propagation in a long pipe cooled by helium:

Mass conservation: 6p+ g (pw) = v
©oat ax T T e
ian- Jd oP 4
Momentum conservation: = (pu) + — (pu?) = ——— - D_lmcu

Energy conservation:
0 1 1 P 4 1, P 4
P £+2u +— pu £+2u +p = e e+5u +E —D—lzNu-k(Tg—Ts)

Mg

Mass deposition rate: m, =

(“’CT“’B r)

Dj — D? 0T, _ D,
4D, ot 17 dHep,

Radial heat transfer:  py,Cy,
|1 ~ ~ Nu-k
q = 1, [E”Z + h(T,, P) — h(TS,P)] - D—l(Tg —Ty)
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@ Numerical model — Radial heat transfer and heat transfer to LHe

® Simplified radial heat transfer model:

GN- Gas flow
1 Nu - k. 9 9 —
Q(lt?p - ri?(. _“2 + l]g o }15 + t“:‘ (T(}' = Ts) T
2 i D] -
o071,
CsnO = — (i
PSNLSN o0 Ydep — Yi
c D, — D, 8T, 2 B Dy T
hwlw =i — o= Cw .
f 4D, o BTep T D, B2

Sieder-Tate correlation:

p 0.14
Nu = 0.027Re*/5prl/3 (H—g>
S

® Detailed information about the numerical model can be found in: Int. Heat Mass Transf.
129 (2019) 1144-1150; Int. Heat Mass Transf. 146 (2020), 118883; Int. Heat Mass Transf. 181
(2021) 121885.
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@

® Heat transfer correlations of He I:

Tuning parameter

105 L}
Film boiling
(Breen and Westwater correlation)
—~ 10*
~ ¥ Py PREIREREERRERIRRSR
._E_ q
(Zubereta” EEEEEEEEEEEER

Q

T

o

» Nucleate boiling

3 102 (Kutateladze correlation)

w

]

0]

(o]

T 10 . .

Convection cooling
(Lantz)
100 1 1 1
1072 1071 10° 10t

Temperature Difference, AT, (K)

102

Numerical model — Heat transfer in the LHe side

® Heat transfer correlations of He Il:

Heat Flux, g, (kW/m®)
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@ Model validation with the experimental results for He |

® \We see a good agreement for the results with different mass flow rate with a single

value of B, parameter.

Threshold Level 4.7 K B,=0.021 W/(cm?2K>/4)
o 060 === ]38m meses 210m =+= 2.82m
=ts 354m === 426m =-= 497m === 569m @® 50KkPaExp
Bipige o 0H6m === 138 eeeneee 210m === 282m .
L =o= 354m =-=- 426m —— 497m ---- 569m 50 kPa S1m

V¥ 100 kPa Exp
=== 100 kPa Sim
A 150 kPa Exp

4 =
3 -
o 150 kPa Sim

0.0 0.5 1.0 1.5 2.0
t(s)
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@ Model validation with the experimental results for He Il

® The heat transfer condition varies greatly with

) ) Tank P kP Optimal
different mass flow rate. We introduced an other ank Pressure (kPa) —

50 0.43
tuning parameter { to the peak heat flux model 100 0.59
. .. . . 150 1.97
which represents the derivation of the situation 500 1.96
from an ideal cylindrical geometry.
70 - -
i ® 50kPaExp
60} - —— 50 kPa Sim

A e e — ¥ 100 kPa Exp
S0t dﬂ___-: \3\. = 100 kPa Sim
) g . 150 kPa Exp
% 40 |~ BathTemp|l < | ... 1 Sim
&= : i |—TI B 2-
= | ~
&= 30 .' = ) == T2 91 = 7
| | o
20} | i -= T4 | - i
; | : ........ s 1 1r - _PA . A
10F - E/Thrgeshold Levqfl o $$ 7 TR T B~
0 T *f"‘.‘x‘“.‘-““f-"“l‘-.7'“""‘:7‘“‘l‘ “““““““““““ 0
0 0.5 1 1.5 0 1 2 3 4 5
1(s) x (m)
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@ Definition of the freeze-out point for He | and He Il case

® The freeze-out length is the upper limit of the propagation of possible contaminant,
which can be evaluated with our 1D numerical model

® By analyzing the arrival time of gas front at each position, the freeze-out point can be
defined by a linear fitting

Linear fitting: R>>0.996

AN
5] = Hel 12 - = Hel
== == He I, h=10 cm == == He II, h=10 ¢cm
4] =" HelLh=30cm 10 7 === He II, h=30 cm
* Hell, h=50 cm \, =sss Hell, h=50cm
X Freeze-out points 87
& 5 Q
= E g 6
] N
2 - X /
I/ :'\ 41
[ v,=0.18 m/s 7
0 n T T T T 0 i
0 2 4 6 8 0 2 4 6 8
x (m) x (m)
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@ Empirical formula for the freeze-out length

For He | cooled tube

O RO A

‘\\
5
1

1 cm
2 cm
3cm
4 cm
Scm
6 cm
7 cm

@ VADACAERO

8 cm

0 50 100

i
n —
=

1 (kgz’(m2 +5))

Empirical Optimal value for He | | Optimal value for He Il m

For He Il cooled tube (7=1.9 K, h=50 cm, ¢)=1)

X (m)

16

14 A

S
1

12 1
2 cm
3cm
4 cm
Scm
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% S o . - . ~— e
N, , -, - ., .y -
\ < . y s -
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50 100 150
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Formula:

Xp = aD‘ll’mc

0.074077
0.91460513
1.08364073
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®

Recent and Future development




Obtain and imaging ultra high turbulence with He Il

® Liquid helium-4 has extremely small kinematic viscosity:

Air ]
Compressed I
air
SFg [
Water 0
Heliumgas | NN
He-l N
He-lI F
10® 107 10%  10° 10"
(b) Kinematic viscosity (m?/s)

® Channel flows with Re~107
has already been achieved in

our cryogenics lab in He-ll.
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1. High turbulence test facility in NHMFL

® Additional fs-laser beam path has been developed to
created 2 tracer lines with adjustable distance, this
upgrade will enable the 2D full field flow visualization.
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m 2. PIV/PTV with He,” clouds created by He3-neutron absorption

® Thermal neutron absorption on He3 atoms leads to the production of small clusters of

helium molecules.

n+° He > 'H+ H+764 keV

(573 keV) 'H ¢

n  “He He

¢+ a —— o
3 H P

(a) (191 keV) (b)

"R

needle
source

Cloud density can be tuned by
changing He3 concentration or
neutron flux.

Laser

-

He 11 filled cell I°_1

° Neutron
beam
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2. PIV/PTV with He,” clouds created by He3-neutron absorption

® Collaboration with researchers at
Oak Ridge and Univ. Tennessee:

Prof. M. R. Fitzsimmons, g OAK
Prof. Xin Tong, et al 4 RIDGE

National Laboratory

He," clouds created by He3-
neutron absorption has been
successfully visualized, 1st report
has been published on PRL.
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2. PIV/PTV with He,” clouds created by He3-neutron absorption
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