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Abstract

Flooding of coastal areas with seawater often leads to density stratification. The stability of the
density-depth profile in a porous medium initially saturated with a fluid of density ρ f after flooding
with a salt solution of higher density ρs is analyzed. The standard convection/diffusion equation subject
to the so-called Boussinesq approximation is used. The depth of the porous medium is assumed to be
infinite in the analytical approaches and finite in the numerical simulations. Two cases are distinguished:
the laterally unbounded case a and the laterally bounded case b. The ratio of the diffusivity and the
density difference (ρs − ρ f ) induced gravitational shear flow is an intrinsic length scale of the problem.
In the unbounded case a, this geometric length scale is the only length scale and using it to write the
problem in dimensionless form results in a formulation with Rayleigh number R=1. In the bounded
case b, the lateral geometry provides another length scale. Using this geometrical length scale to write
the problem in dimensionless form results in a formulation with a Rayleigh number R given by the ratio
of the geometric and intrinsic length scales.

For both case a and case b, the well-known Boltzmann similarity solution provides the ground
state. Three analytical approaches are used to study the stability of this ground state, the first two
based on the linearized perturbation equation for the concentration and the third based on the full
nonlinear equation. For the first linear approach, the surface spatial density gradient is used as an
approximation of the entire background density profile. This results in a crude estimate of the L2-norm
of the concentration showing that the perturbation at first grows, but eventually decays in time.

For the other two approaches, the full ground state solution is used, although for the second linear
approach subject to the restriction that the ground state slowly evolves in time (the so-called ’frozen
profile approximation’). Just like the ground state, the resulting eigenvalue problems can be written in
terms of the Boltzmann variable. The linearized stability approach holds only for infinitesimal small
perturbutions, whereas the nonlinear, variational energy approach is not subject to such a restriction.
The results for all three approaches can be expressed in terms of Boltzmann

√
t transformed relationships

between the system Rayleigh number and perturbation wave number. The results of the linear and
nonlinear approaches are surprisingly close to each other. Based on the system Rayleigh number, this
allows delineation of systems that are unconditionally stable, marginally stable, or episodically unstable.
These analytical predictions are confirmed by direct two-dimensional numerical simulations, which
also show the details of the episodic instabilities as function of the wave number for case case a and
the wave number and Rayleigh number for case b. A numerical example of the effect of a layer with
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low permeability is also shown. Using typical values of the physical parameters, the analytical and
numerical results are interpreted in terms of dimensional length and time scales. In particular an
explicit stability criterion is given for vertical column experiments.

1. Introduction

Stability of density stratified fluids has been studied for more than 100 years. In the book ’The
self-made tapestry’, Ball (2001) gives in chapter 7 a lucid description of the history of the analysis
of pattern formation in such fluids. The extension to fluids in porous media is nearly as old and
has been reviewed thoroughly by Straughan (2008). At first, stability was explored primarily by
analytical methods applied to the linearized perturbation equations. Later it became feasible to
use analytical and numerical methods to study the full nonlinear equations.

Employing those modern methods, van Duijn et al. (2002) analyzed gravitational stability
of a saline boundary layer below an evaporating salt lake. They compared stability criteria
obtained by three different methods: the method of linearized stability; the traditional energy
method using as constraint the integrated Darcy equation; an alternative energy method using
as constraint the point-wise Darcy equation. The two constraints are, respectively, referred to as
integral constraint and differential constraint. They showed that the integral constraint gives a
stability bound of the Rayleigh number equal to the square of the first root of the Bessel function
J0, in agreement with previous numerical results of Homsy and Sherwood (1976). The differential
constraint gave results that were in excellent agreement with experiments by Wooding et al.
(1997a,b). The stability of the saline boundary layer formed by upward flow was treated in
greater detail by Pieters (2004) and Pieters and Schuttelaars (2008).

In this paper we use the same approach to analyze stability following flooding with salt water
of a soil initially saturated with less saline water. In the natural environment, such flooding is
quite common. Marine transgression is a dominant feature of Holocene geo-hydrological history,
starting almost 12 millennia ago. For example, see Raats (2015) for a historical perspective,the
Dutch coastal region is shaped by marine transgression and human interference in response to
this. In the region where now the fresh-water IJsselmeer and the IJsselmeerpolders are located,
there was in Roman times the fresh-water Flevomeer, later known as Almere. Due to marine
transgression, the inland lake gradually evolved into the inland Zuiderzee, which stood in open
connection with the North Sea. From about 1600 AD onward, the bottom of Zuiderzee became
more and more saline. With the double purpose of protection from floods and the creation of
new polders, in 1932 the tidal inlet to the Zuiderzee was closed off by a dam. In a few years the
brackish Zuiderzee changed into the fresh-water IJsselmeer and as a result of that the bottom
started to desalinize. That process is still continuing.

In the 1930s and early 1940s, again following Raats (2015), a group of civil engineers inspired
by the mathematical physicist J. M. Burgers did pioneering work on transport of salts across the
water-sediment interface. They formulated the linear convection-dispersion equation and solved
this equation for appropriate boundary conditions. The calculated salinity profiles in the top 10
meters were mostly in good agreement with profiles measured in the 1950s by W.H. van der
Molen (see Raats (2015) and the references therein). The spatial distribution of the measured
salinity profiles over a large area, such as the North-East polder, were used as an indicator of the
spatial distribution of the flow velocities. However, not all field measurements were in line with
the computations. In a few scattered places in the North-East polder higher salinities were found
at depths of 10–15 m, far deeper than predicted and measured in other places. In some cases
this could reflect seepage of water from the former Zuiderzee to lower lying polders along the
coast. In others there was a highly permeable Pleistocene deposit reaching the surface. Van der
Molen speculated that for the latter ’this phenomenon is probably due to convective currents in
the bottom of the Zuiderzee between 1600 and 1931 A.D’. Specifically, he noted that the small
difference in density between the fresh water present in the soil and the supernatant seawater is
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sufficient to cause convection currents. This is in line with the theory and computations presented
in this paper.

On the time scale of centuries and under certain circumstances, marine transgression may
cause rapid salinization of entire aquifers. In northwest Germany, Holocene transgressions of
a few thousands of years have brought salt water of corresponding age to a depth of over 200
m (Mull and Battermanna (1980)). Earlier Geirnaert (1973) had reported similar observations
along the Dutch coast. In view of such results, it may seem surprising that at many other
places all around the world fresh and brackish waters have been found beneath saline waters on
the continental shelves (Post et al., 2013). Wherever this occurs, the deep-lying fresh water is
invariably protected from invading ocean waters by sediments with a low hydraulic conductivity.
Post and Simmons (2009) illustrate by means of sand tank laboratory experiments and numerical
modeling how low-permeability lenses protect fresh water from mixing with overlying saline
water. This is also in line with the theory presented in this paper.

On a seasonal time scale, exchange of substances between fresh water in sediments and
supernatant saline water may occur. Smetacek et al. (1976) reported that in the water of the
Kiel Bight high nutrient concentrations and low oxygen concentrations were found following
an influx of higher density water. They suggested that this could be related to density induced
natural convection in the sediments. Webster et al. (1996) used a computational model and
laboratory experiments to demonstrate that gravitational convection can make an important
contribution to the exchange of water and solutes between sediments and a supernatant water
column in regions subject to significant temporal variations in salinity, such as estuaries. In effect,
they verified the suggestion put forward by Smetacek et al. (1976).

In coastal regions, tsunamis often cause flooding by seawater and natural convection may then
strongly contribute to the mixing of this seawater with the underlying fresh water. Illangasekare
et al. (2006) described the impact of the 2004 tsunami in Sri Lanka on groundwater resources.
They included results of an experiment in a 53 × 30 × 2.7 cm PlexiglasTM tank filled with glass
beads. Vithanage et al. (2008) used a laboratory model to study natural convection in coastal
aquifers following flooding by sea water.

The analysis of the stability of density stratified flow below a ponded surface in this paper
has important connections with a pioneering paper by Wooding (1962b). In that paper, Wooding
uses the method of linearized stability to analyze the behavior of an initially sharp, horizontal
interface separating two miscible fluids in an infinitely long, vertical, porous column. In the
upper half of the column the fluid has a higher density than in the lower half. He studied the
time dependence of the linearized equations by means of an expansion in terms of Hermite
polynomials. In spite of the rather primitive numerical tools available in those days, the approach
undertaken by Wooding in this and other papers - both theoretical and experimental: see e.g.
Wooding (1959, 1960, 1962a, 1969); Wooding et al. (1997a,b) - is still a source of inspiration for
those studying stability problems in porous media. For this reason we dedicate this paper in his
honor.

Long before we all were made energy conscious in the 1970s, already in the mid 1950s Robin Wooding
(1926–2007) was concerned with geothermal problems. He started his research in this area at the DSIR
Applied Mathematics Laboratory at Wellington, New Zealand in the mid 1950s, continued it with a DSIR
National Research Fellowship at Emmanuel College of the University of Cambridge. There he obtained in
1960 his PhD-degree under the supervision of Dr. P.G. Saffman in the group of Professor G.I. Taylor. He
returned to DSIR, from where he moved in 1963 on to CSIRO at Canberra to work on overland flow and
near-surface, atmospheric turbulence. On a Senior Research Fellowship, in 1968 he visited the California
Institute of Technology and there he wrote Wooding (1969). In 1970/71 he took leave without pay to
spend a year at The Johns Hopkins University and the University of Wisconsin to work on flow and
transport in porous media, after which he decided to return not to CSIRO but to DSIR, where he stayed
until he retired in 1987. He then returned again to Canberra as Honorary Fellow at the CSIRO Pye Lab-
oratory. There for the last two decades of his life his main interest was the salt lake problem mentioned above.
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After this introduction, the outline of this paper is as follows. The mathematical model
for studying the stability of density stratified flow below a ponded surface is formulated in
Section 2, where we distinguish between laterally unconfined and confined domains. A special
solution of this model is presented in Section 3. This solution describes the formation of a
one-dimensional salt layer that penetrates into the subsurface by diffusion/dispersion. It is the
main goal of this paper to investigate the gravitational (in)stability of this layer. In particular, we
study the influence of the system’s dimensionless Rayleigh number and the role of time. To this
end we perturb the special solution and derive the corresponding perturbation equations. This
is done in Section 4. Next, in Section 5, we investigate the stability by two different methods,
namely the standard method of linearized stability, where we employ two approaches, and the
energy method with differential constraint. Stability results for homogeneous soils are discussed
in Section 6.1 and for non-homogeneous (layered) soils in Section 6.2. An interpretation of the
results in terms of the physical parameters of the problem is given in Section 7, and conclusions
are presented in Section 8.

2. Problem formulation

We consider an isotropic porous medium occupying either

case a: the laterally unbounded half-space Ω=ΩA= {z>0}, or

case b: the three dimensional, laterally confined, semi-infinite region Ω=ΩB= {(x, y, z) :
−Lx,y<x, y<Lx,y, z>0}.

Here z is the vertical coordinate pointing downwards. We assume that the permeability κ is
constant in the x, y direction, i.e. κ=κ(z) only, and that the porosity φ is constant throughout Ω.

Adopting the Boussinesq approximation (Oberbeck (1879), Boussinesq (1903), Chandrasekhar
(1981), Landman and Schotting (2007)), we consider the equations

φ
∂ρ

∂t
+∇ · (Uρ) −D∆ρ = 0 , (1a)

−
κ(z)
µ
∇(P̃− ρ f gz) +

κ(z)
µ

(ρ− ρ f )gez = U, (1b)

∇ ·U = 0 , (1c)

in Ω and for t>0. In these equations, ρ denotes the fluid density, U the Darcy velocity, and P̃
the fluid pressure. These are the unknowns in the problem that need to be determined. The
(given) physical parameters are: D (dispersion/diffusion coefficient), µ (fluid viscosity), g (gravity
constant), and ρ f (fresh water density). Both D and µ are assumed constant throughout this
paper.

The boundary conditions at the top of the porous medium are given by:

ρ = ρs and P̃ = ρsgh at z=0, for t>0 , (2a)

where ρs is the salt (sea) water density and h the height of the overlying salt water layer. Boundary
condition (2a) is a simplification of what happens in practice. The laboratory experiments by
Webster et al. (1996) show that growing instabilities induce local outflow from the porous medium
into the ponded layer. It is assumed in this paper that outflow across the top of the porous
medium {z=0} has no effect on the density of the fluid in the overlying layer (which is ρs for all
t>0).

The initial condition is given by:

ρ = ρi in Ω, at t=0 , (2b)
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where the initial density satisfies ρ f 6ρi6ρs.

Remark 1 (i) The results for case b can be generalized to arbitrarily shaped bounded cross-sections.
In Section 7 we consider the case of a circular cross-section as well.

(ii) Since Darcy’s law contains the gradient of the pressure, one may replace P̃ by P̃ + P̃0, with P̃0
constant in space, and obtain the same discharge and salt distribution. Hence the specific value
of P̃ at the top z = 0 does not play a role. In other words, the discharge and salt distribution do
not depend on the height h of the ponded layer. In essence this due to the assumed constraint of
incompressibility of the fluid.

It is assumed that ρi→ρ f as z→∞, implying that ρ→ρ f as z→∞ for all t>0. Thus ρ f acts
as a far field reference value. We further assume that as z→∞, the pressure gradient force is
balanced by the gravitational force. Thus, we consider those solutions of (1) that satisfy:

ρ→ ρ f and
∂P̃
∂z
→ ρ f g as z→∞, for all t>0. . (2c)

For the horizontally bounded case b, it is assumed that on lateral boundary Γv (see Figure 2)
the fluxes of water and solute vanish:

U · n = 0, (Uρ−D∇ρ) · n = 0 along Γv, for t>0 , (2d)

where n is the unit vector on Γv.
Using the constant densities ρs and ρ f we define:

C =
ρ− ρ f

ρs − ρ f
and P = P̃− ρ f gz . (3)

Here P is the pressure based on the far field reference density ρ f . Introducing (3) into (1) and (2)
gives

φ
∂C
∂t

+∇ · (U C−D∇C) = 0 , (4a)

−
κ(z)
µ
∇P +

κ(z)
µ

(ρs − ρ f )gCez = U, (4b)

∇ ·U = 0 , (4c)

C = Ci in Ω, at t = 0 , (5a)

C = 1, P = ρsgh at z = 0, for t > 0 , (5b)

C→ 0,
∂P
∂z
→ 0 as z→∞, for t > 0 , (5c)

and for case b also

U · n = 0, (UC−D∇C) · n = 0 along Γv, for t>0 . (5d)

Next we introduce the characteristic scales for length (Lc), time (Tc), pressure (Pc), discharge
(Qc) and permeability (κc=κ(0)). Using these scales, we substitute the dimensionless variables

(x∗, y∗, z∗) =
(x, y, z)

Lc
, t∗ =

t
Tc

, P∗ =
P
Pc

, U∗ =
U
Qc

, κ∗ =
κ
κc

, (6)
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into the equations (4) and conditions (5) to obtain in the scaled domain Ω∗:

φL2
c

TcD
∂C
∂t∗

+ R∇∗ · (U∗ C) − ∆∗C = 0 , (7a)

−
κcκ∗(z∗)Pc

µLc
∇
∗P∗ +

κcκ∗(z∗)
µ

(ρs − ρ f )gCez = QcU∗ , (7b)

∇ ·U∗ = 0 , (7c)

subject to

C = Ci in Ω∗, at t∗ = 0 , (8a)

C = 1, P∗ =
ρsgh
Pc

at z∗ = 0, for t∗ > 0 , (8b)

C→ 0,
∂P∗

∂z∗
→ 0 as z∗ →∞, for t∗ > 0 , (8c)

and for case b also

U∗ · n = 0, (RU∗C−∇∗C) · n = 0 along Γ∗v, for t>0 . (8d)

The transformed region Ω∗ is given by

(case a) Ω∗A = {z∗ > 0} , (9a)

(case b) Ω∗B = {(x∗, y∗, z∗) : |x∗| <
Lx

Lc
, |y∗| <

Ly

Lc
, z∗ > 0} , (9b)

and in (7) and (8) the Rayleigh number R is given by

R =
QcLc

D
. (10)

Note that in (7b) we introduced

κ∗(z∗) =
κ(Lcz)
κc

. (11)

Balancing the first and third term in transport equation (7a) gives for the time scale Tc:

Tc =
φL2

c

D
, (12a)

and, similarly, balancing all terms in Darcy’s law (7a) gives the pressure scale Pc:

Pc =
µLcQc

κc
, (12b)

and discharge scale Qc:

Qc =
κc(ρs − ρ f )g

µ
. (12c)

The discharge scale Qc can be interpreted as a density difference induced, gravitational shear
flow (de Josselin de Jong, 1960).

The time scale Tc and pressure scale Pc are known once the length scale Lc has been selected. In
the laterally unbounded case a, there is no obvious length scale in terms of the spatial dimensions
of the problem. Therefore we use the intrinsic length scale Lc=D/Qc. In the laterally bounded
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Table 1: Overview of the definitions of the case a and case b scales.

case a case b

Qc=
κc(ρs − ρ f )g

µ

Lc=
D
Qc

Lc=
Lx

π

Tc=
φD

Q2
c

Tc=
φL2

c

D
=
φL2

x

π2D

Pc=
µD
κc

Pc=
µLcQc

κc
=
µLxQc

πκc

R=1 R=
Lc

D/Qc
=

Lx

πD/Qc

case b, we choose Lc=Lx/π or some other characteristic horizontal length scale. The factor π is
for notational and technical convenience. All scales are summarized in Table 1.

For case b, the Rayleigh number is, apart from the factor π, the ratio of the characteristic
geometric length scale Lx and the intrinsic length scale D/Qc. Its value may vary considerably
due to Lx and, in particular, κc (see Section 7).

The scaled region Ω∗ is given by

(case a) Ω∗A = {z∗ > 0} , (13a)

(case b) Ω∗B = {(x∗, y∗, z∗) : |x∗| < π, |y∗| <
Ly

Lx
π, z∗ > 0} . (13b)

Thus after scaling we obtain the dimensionless form of the equations, dropping the superscript *,

∂C
∂t

+ R∇ · (U C) − ∆C = 0 , (14a)

1
κ(z)

U = −∇P + Cez , (14b)

∇ ·U = 0 , (14c)

in Ω and for t>0, subject to

C = Ci in Ω, at t=0 , (15a)

C = 1, P =
ρsgh
Pc

at z = 0, for t > 0 , (15b)

C→ 0,
∂P
∂z
→ 0 as z→∞, for t > 0 , (15c)

and for case b also

U · n = 0, (RUC−∇C) · n = 0 along Γv, for t>0 . (15d)

The transformed region Ω is given by

(case a) ΩA = {z > 0} , (16a)

(case b) ΩB = {(x, y, z) : |x| < π, |y| <
Ly

Lx
π, z > 0} , (16b)
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Fig. 1: Ground state profiles for various values of time.

Remark 2 Suppose one compares different values of R in case b. These differences are due to differences
in κc and Lx. Note that if Lx changes, then κ(z) changes accordingly, because of the scaling of z. This is
expressed by (11). For case a, the κc only appears in the length scale.

3. The ground state solution

In this paper we investigate the stability of the particular solution of (14) subject to (15) for
Ci≡0, i.e. we assume that the initial density ρi is equal to the far field density ρ f . We call this
particular solution the ground state and denote it by {C0, U0, P0}. Because the boundary and
initial conditions do not depend on the horizontal coordinates x and y, the ground state depends
only on z and t. Thus {C0, U0, P0} is the solution of

∂C0

∂t
+ R

∂U0C0

∂z
−
∂2C0

∂z2 = 0 , (17a)

1
κ(z)

U0 = −
∂P0

∂z
+ C0 , (17b)

∂U0

∂z
= 0 , (17c)

subject to

C0 = 1 and P0 =
ρsgh
Pc

at z=0, for t>0, (18a)

C0 → 0 and
∂P0

∂z
→ 0 as z→∞, for t>0, (18b)

C0 = 0 in 0<z<∞ and for t=0. (18c)

Applying (18b) in (17b) shows that U0=0 for z→∞. In view of (17c) this means that U0=0 for
all z. Using this in (17) gives:

∂C0

∂t
=
∂2C0

∂z2 , (19a)

∂P0

∂z
= C0 . (19b)

8



Solving (19a) subject to (18) yields

C0(z, t) = erfc
(

z

2
√

t

)
. (20a)

This one-dimensional solution describes the formation of a salt layer that enters the subsurface
by diffusion. Integrating (19b) subject to (18a) and (20a) results in

P0(z, t) =
ρsgh
Pc

+ 2
√

t
∫ z

2
√

t

0
erfc(ζ) dζ . (20b)

Typical profiles for various t>0 are shown in Figure 1. Note that

lim
t→∞

P0(z, t) =
ρsgh
Pc

+ z for each fixed z>0,

or in terms of the original variables

lim
t→∞

P̃(z, t) = ρsg(z + h) for each fixed z>0. (21)

Equation (21) reflects the fact that ponding with a layer of fluid having constant density ρs, results
in the halfspace Ω being filled with stagnant fluid of density ρs as t→∞.

4. The perturbation equations

To investigate the stability of the ground state {C0, U0, P0}we write the original variables as

C = C0 + c, U = U0 + u, P = P0 + p . (22)

where u=(u, v, w)T. Here c, u and p are the perturbations whose behaviour we need to study.
For this we have to first write the perturbation equations. Substituting (22) in equations (14), the
initial condition (15a) and the boundary conditions (15b) gives

∂(C0 + c)
∂t

= −∇ · ((C0 + c)(U0 + u)) + ∆(C0 + c) , (23a)

1
κ(z)

(U0 + u) = −∇(P0 + p) + (C0 + c)ez , (23b)

∇ · (U0 + u) = 0 , (23c)

subject to

C0 + c = Ci in Ω, for t=0 , (24a)

C0 + c = 1, P0 + p = 1 at z=0, for t>0 , (24b)

C0 + c→ 0,
∂(P0 + p)

∂z
→ 0 as z→∞, for t>0 , (24c)

and for case b also

(U0 + u) · n = 0, (R(U0 + u)(C0 + c) −∇(C0 + c)) · n = 0 along Γv, for t>0 . (24d)

In view of the properties of the ground state solution, there results for the perturbations the
equations

∂c
∂t

+ R w
∂C0

∂z
− ∆c + R u · ∇c = 0 , (25a)

1
κ(z)

u +∇p− c ez = 0 , (25b)

∇ · u = 0 , (25c)
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and the boundary conditions

c = 0, p = 0 at z=0, for t>0 , (26a)

c→ 0,
∂p
∂z
→ 0 as z→∞ and t>0 , (26b)

and for case b also

u · n = 0, ∇c · n = 0 along Γv, for t>0 . (26c)

Multiplying (25b) by κ(z) and applying the divergence gives

∇ · u = 0 = ∇ · (−κ(z)∇p + κ(z)cez) .

Hence

∂
∂z

(
−κ(z)

∂p
∂z

+ κ(z)c
)
− κ(z)∆⊥p = 0 ,

where ∆⊥ = ∂2

∂x2 +
∂2

∂y2 denotes the horizontal Laplacian. Substituting the vertical component w
of the Darcy equation gives

∂w
∂z

= κ(z)∆⊥p . (27)

Using this identity, the pressure boundary condition in (26a) implies for w the Neumann condition

∂w
∂z

= 0 at z=0, for t>0. (28)

Following Lapwood (1948), we take the Laplacian of the vertical component of the perturbation
Darcy equation (25b). This gives

∆
(

1
κ(z)

w
)
= −

∂
∂z

∆p + ∆c . (29)

Further, taking the divergence of the perturbed Darcy equation (25b) and using (25c),

∇ ·

(
1
κ(z)

u
)
= u · ∇

1
κ(z)

= w
d
dz

1
κ(z)

= −∆p +
∂c
∂z

,

yielding upon differentiation with respect to z

∂
∂z

(
w

d
dz

1
κ(z)

)
= −

∂
∂z

∆p +
∂2c
∂z2 . (30)

Subtracting (30) from (29) results in

∆
(

1
κ(z)

w
)
−
∂
∂z

(
w

d
dz

1
κ(z)

)
= ∆⊥c ,

or

∇ ·

(
1
κ(z)
∇w

)
= ∆⊥c . (31)

The Neumann condition (28) and identity (31) will be used frequently in the next sections.
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5. Stability analyses

In the unbounded case a, we consider x, y-periodic solutions of the perturbation equations with
respect to x, y-periodic cells of the form

ΩA := {(x, y, z) : (x, y) ∈ T , z > 0} , (32)

where T ⊂ R2 is an element (tile) of the horizontal periodic structure. This implies a redefinition
of ΩA as introduced in Section 2. As noted in Chandrasekhar (1981) or Straughan (2008), T
can be a rectangle (or square), a strip or a hexagon. In this paper the focus is on nonlinear
stability and on the onset of infinitesimal small perturbations (linear approach). Details about the
characterization of the periodic structure as for instance in Mielke (2002), who studied the spatial
structure in the Rayleigh–Bénard problem, are beyond the scope of this paper. Some aspects,
though, are discussed in Appendix A.

In the linear approach, the horizontal periodicity is described by a function f = f (x, y) that
satisfies

∆⊥ f + a2 f = 0 in R2 , (33)

where a is a characteristic wavenumber. If T is a hexagon with side L one has (see Chandrasekhar
(1981))

f (x, y) = cos
4π
3L

(

√
3

2
x +

1
2

y) + cos
4π
3L

(

√
3

2
x−

1
2

y) + cos
4π
3L

y , (34a)

and

a =
4π
3L

. (34b)

In this paper we visualize the horizontal periodicity in the form of rectangles T =(0, `x) × (0, `y),
where `x and `y are for the moment unspecified. This yields periodic cells of the form

ΩA := {(x, y, z) : |x| < `x, |y| < `y, z > 0} . (35)

In (35), `x, `y are dimensionless lengths. A sketch of a two-dimensional cross-section of the flow
domain in the x, z-plane is shown in Figure 2.

In the x, y-periodic assumption, periodic boundary conditions are applied along the vertical
boundary of ΩA, which we denote by Γv. This means that c, u, and p can be extended in a
periodic way over the whole Ω, and belong to C∞(Ω).

In the bounded case bwe consider the perturbation equations in the flow domain Ω=ΩB,
which we write as

ΩB = {(x, y, z) : |x| < π, |y| < `π, z > 0} , (36)

where `=
Ly
Lx

is a dimensionless length ratio. Here we use no-flow and no-transport conditions
along the vertical boundary Γv.

For computational purposes, see Section 6.1.3, we use the depth-truncated versions of ΩA
and ΩB:

Ωd
A := {(x, y, z) : |x| < `x, |y| < `y, 0 < z < d} , (37)

and

Ωd
B := {(x, y, z) : |x| < π, |y| < `π, 0 < z < d} . (38)

where d denotes the dimensionless depth.
In Subsection 5.1 we consider the method of linearized stability, valid for small perturbations,

and in Subsection 5.2 the nonlinear, variational energy method.
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Fig. 2: Sketch of a two-dimensional cross-section of the flow domain in the x, z-plane. In the laterally unbounded
case a: Periodic boundary conditions for the concentration c, the discharge u, and pressure p apply at vertical
boundary Γv =Γ2 ∪ Γ4. In the laterally bounded case b: No-flow and no-transport conditions apply at the
vertical boundary Γv. For numerical simulations, we consider a truncated column of depth d.

5.1. Linearized stability

Assuming the perturbations to be small, one disregards the nonlinear term u · ∇c in (25a). The
result is the perturbation system

∂c
∂t

+ R w
∂C0

∂z
− ∆c = 0 , (39a)

∇ ·

(
1
κ(z)
∇w

)
= ∆⊥c , (39b)

∂w
∂z

= κ(z)∆⊥p , (39c)

in ΩA or ΩB, with

c = 0 ,
∂w
∂z

= 0, p = 0 at z=0, for all t>0 , (40a)

c→ 0 , w→ 0,
∂p
∂z
→ 0 as z→∞, for all t>0 , (40b)

and with

(case a) Periodic conditions at Γv (40c)

(case b) No-flow and no-transport conditions at Γv (40d)

Note that (39) is a linear system in terms of c, w (z-component of Darcy velocity), and p.
Because of the linearity and the nature of the conditions (40a) and (40b), we may assume that
solutions are of the form

{c, w, p}(x, y, z, t) = {c, w, p}(z, t) cos axx cos ayy , (41)

12



Then (40c), (40d) are satisfied provided the wavenumbers satisfy

(case a) ax =
nπ
`x

, ay =
mπ
`y

n, m = 1, 2, · · · (42a)

(case b) ax = n, ay =
m
`

n, m = 1, 2, · · · (42b)

Substituting (41) in (39) gives for the amplitudes c(z, t), w(z, t), and p(z, t) the equations

∂c
∂t

+ R w
∂C0

∂z
=
∂2c
∂z2 − a2c , (43a)

−
∂
∂z

(
1
κ(z)

∂w
∂z

)
+

a2

κ(z)
w = a2c , (43b)

∂w
∂z

= −a2κ(z)p , (43c)

for z>0 and t>0, subject to conditions (40a), (40b). Here a2=a2
x + a2

y.
We will study the linearized problem (43) for all a>0 and R>0. However, when interpreting

the results in terms of stability we consider

(case a) a unspecified and R≡1

(case b) a=an,m=
√

n2 + (m/`)2 and R=RS ,

where RS denotes the system Rayleigh number as specified in Table 1.
It suffices to consider equations (43a) and (43b) for c and w only, since p follows directly from

equation (43c).
In the following sections 5.1.1 and 5.1.2 we use two distinct methods to obtain linear stability

results.

5.1.1 Direct L2-estimate

To obtain an estimate for the L2-norm of the concentration perturbation, we multiply equation
(43a) by c and integrate the result in z. This gives the expression

1
2

d
dt

∫
∞

0
c2(z, t) dz +

∫
∞

0

(
∂c
∂z

(z, t)
)2

dz

= −a2
∫
∞

0
c2(z, t) dz−R

∫
∞

0
c(z, t)w(z, t)

∂C0

∂z
(z, t) dz (44)

for each t>0.
Since the ground state saturation C0 satisfies

0 < −
∂C0

∂z
(z, t) 6 −

∂C0

∂z
(0, t) =

1
√
πt

for z>0 and t>0 , (45)

we can estimate (44) by, disregarding the second term in the left side as well,

1
2

d
dt

∫
∞

0
c2(z, t) dz 6 −a2

∫
∞

0
c2(z, t) dz +

R
√
πt

∫
∞

0
|c(z, t)w(z, t)| dz

for t>0.
Introducing the L2-norm (i.e. ||c||22=

∫
∞

0 c2 dz) and dropping t from the notation, this inequality
is written in the compact form

1
2

d
dt
||c||22 6 −a2

||c||22 +
R
√
πt

∫
∞

0
|cw| dz . (46)

13



At this point we use the Cauchy–Schwarz inequality∫
∞

0
|cw| dz 6 ||c||2||w||2 ,

to estimate (46) further as

1
2

d
dt
||c||22 6 −a2

||c||22 +
R
√
πt
||c||2||w||2 . (47)

Next we multiply (43b) by w and integrate the result. Using the Neumann condition (28) this
yields ∫

∞

0

1
κ(z)

(
∂w
∂z

)2

dz + a2
∫
∞

0

1
κ(z)

w2 dz = a2
∫
∞

0
wc dz . (48)

Now let κ=maxz>0 κ(z). Then we deduce from (48)

1
κ
||w||22 6

∫
∞

0
|w||c| dz

6 ||w||2||c||2 ,

where we used again Cauchy–Schwarz. Thus

||w(t)||2 6 κ||c(t)||2 for t>0 . (49)

Applying this inequality in (47) gives

d
dt
||c||22 6

(
−2a2 +

2Rκ
√
πt

)
||c||22 . (50)

Integration this expression in t yields the estimate

||c(t)||2 6 ||c(0)||2e
−a2t+ 2Rκ

√
π

√
t

. (51)

By (49), the same holds for ||w(t)||2. Next we apply (49) in (48) to find∫
∞

0

1
κ(z)

(
∂w
∂z

)2

dz 6 a2
∫
∞

0
|wc| dz 6 a2

||w||2||c||2 6 a2κ||c||22 .

Using this inequality and (43c) we obtain∫
∞

0
κ(z)p2 dz =

1
a4

∫
∞

0

1
κ(z)

(
∂w
∂z

)2

dz 6
κ

a2 ||c||
2
2 .

Hence

||p(t)||2 6
1
a

√
κ
κ
||c(t)||2 for t>0 , (52)

where κ=minz>0 κ(z).
Thus both the pressure p and the vertical flow w decay like c. Estimate (51) says that x, y-

periodic perturbations, characterized by the wave number a, eventually decay in time if the initial
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Fig. 3: Stability upperbound by direct L2-estimate: right-hand side in (51).

amplitude c(0) ∈ L2([0,∞)) (i.e.
∫
∞

0 c(0)2 dz<∞). This is due to the term −a2t in the exponent.
In essence, this is a diffusive term. This can be seen when going back to the dimensional form

a2t −→


(
a

D
Qc

)2 Q2
c t

φD
, (case a)

(aLc)
2 Dt
φL2

c
, (case b)

where now a and t are dimensional. A sketch of the upperbound in (51) is shown in Figure 3.
Note that the maximum is reached at

t = Td =
R2κ2

a4π
.

The stability result expressed by (51) was derived using the rather crude estimate (45). In the
next section we do not use (45). Instead we consider the growth or decay of small perturbations
of C0(z, t) for each t>0.

For future reference we introduce

RM = RM(a, t) :=
a2
√
πt
κ

. (53)

Using this in (50) gives the form

d
dt
||c||22 6 −2a2

{
1−

R
RM

}
||c||22 , (54)

implying that if R<RM(a, t), then L2-stability of the linearized system is guaranteed.

5.1.2 Eigenvalue formulation

Again we start from the linear system (43). In case of a steady, i.e. time independent, ground
state, as in Wooding et al. (1997a,b), one looks for amplitudes c and w that have an exponential
growth rate in time, i.e. {c, w}(z, t)= {c, w}(z)eσt. If σ<0, then all small perturbations decay in
time and we call the system linearly asymptotic stable. If, on the other hand, σ>0 then small
perturbations grow exponentially in time and we call the system unstable.
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In this paper the ground state depends on time as well. However, since ∂C0
∂z (z, t+ τ)≈ ∂C0

∂z (z, t)
for |τ| being sufficiently small, we proceed similarly as in the steady case. This is called the
’frozen-profile’ approach (van Duijn et al., 2002).

Hence, for given t>0, we consider instead of (43a) the approximate equation

∂c
∂τ

+ R w
∂C0

∂z
(z, t) =

∂2c
∂z2 − a2c , (55)

for τ> 0, but sufficiently small. Now time t appears as a parameter in the equation. We then
assume that the perturbations have an exponential growth rate denoted by σ, i.e.

{c, w}(z, τ) = {c, w}(z) exp(στ) . (56)

Substituting (56) into (55) and (43b) yields the following eigenvalue problem: For given a>0,
t>0 and σ, find the smallest R>0 (denoted by R=R1(a, t, σ)) so that the problem

σc =
d2c
dz2 − a2c−R w

∂C0

∂z
(z, t) , (57a)

−
d
dz

(
1
κ(z)

dw
dz

)
+

a2

κ(z)
w = a2 c , (57b)

for z>0, with

c = 0,
dw
dz

= 0 at z=0 , (57c)

c→ 0, w→ 0 as z→∞ (57d)

has a non-trivial solution.
The eigenvalues now depend on a, t, and on the growth rate σ. In the salt lake problem

(Pieters and van Duijn, 2006) it was shown that the smallest positive eigenvalue R1(a, t, σ) satisfies

R1(a, t, σ) ≶ R1(a, t, 0) if and only if σ ≶ 0 . (58)

This expresses exchange of stability. We assume here that (58) also holds for the eigenvalue
problem (57). Under this assumption, which is supported by numerical evidence in Appendix C,
it suffices to analyse (57) for the case of neutral stability, i.e. σ≡0.

For completeness we write the eigenvalue problem resulting from linearized stability.

(PL)



Find smallest R>0 so that the system

d2c
dz2 − a2c−R w

∂C0

∂z
(z, t) = 0

−
d
dz

(
1
κ(z)

dw
dz

)
+

a2

κ(z)
w = a2 c

 for z>0 , (59)

with c and w satisfying

c = 0,
dw
dz

= 0 at z=0 ,

c→ 0, w→ 0 as z→∞ ,

has a nontrivial solution.

Note that here a>0 and t>0 act as parameters. The smallest positive eigenvalue is denoted by
RL=RL(a, t). We return to this problem in section 6.1.1.

The behaviour of large perturbations is studied in the next section.
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5.2. The variational energy method

The method of linearised stability holds for infinitesimal small perturbations. What can be
said about the system behavior for larger perturbations. To address this point, we apply the
variational energy approach, see van Duijn et al. (2002) for the specific application to the salt lake
problem and Straughan (1992, 2008) for a general overview.

Remark 3 The energy method can be applied for both domain ΩA (case a) and ΩB (case b). In the
derivation that follows, we use Ωi to denote the flow domain. The index i can refer to A or B. Both
geometrical cases would give the same equations, although the interpretation of the stability results is
different.

In the energy method one estimates the time derivative of the L2-norm of the concentration
perturbation c. In particular, the aim is to find the largest R-interval for which

d
dt

∫
Ωi

c2 < 0 for all t>0 . (60)

Here and in the integrals below we disregard the infinitesimal volume elements in the notation.
The related maximum R-value clearly will depend on the wavenumber a and, because C0=C0(z, t),
on time t. Starting point here is the nonlinear system (25).

To investigate (60), we multiply (25a) by c and integrate over Ωi. Using (25c) and the boundary
conditions along Γv, we find the identity:

1
2

d
dt

∫
Ωi

c2 = −

∫
Ωi

|∇c|2 −R
∫

Ωi

cw
∂C0

∂z
. (61)

Thus, if R is chosen such that the right-hand side of (61) is negative for all perturbations satisfying
a given constraint which is closest to the solution of the problem, then stability is guaranteed.

Roughly, there exist two approaches to incorporate the constraint on the admissible pertur-
bations. One is based on (25c) (see Homsy and Sherwood (1976)), and the integrated Darcy
equation (25b):

∇ · u = 0 ,
∫

Ωi

1
κ(z)
|u|2 −

∫
Ωi

cw = 0 . (62)

The other approach, and the one we focus on in this paper, uses the pointwise differential
expression (31) as constraint:

∇ ·

(
1
κ(z)
∇w

)
= ∆⊥c in Ωi .

Applied to the salt lake problem, van Duijn et al. (2002) showed that this gives sharper results
than constraint (62). It leads to the following class of admissible perturbations:

H =

(c, w) , (0, 0) : c, w (or u) are x, y-periodic with respect to Ωi,

c=
∂w
∂z

=0 at z=0, c=w=0 as z→∞, and ∇ ·
(

1
κ(z)
∇w

)
=∆⊥c in Ωi

 .

In the energy method the goal is to determine the largest R-interval for which∫
Ωi

|∇c|2 + R
∫

Ωi

cw
∂C0

∂z
> 0 for all (c, w) ∈H .
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To this end we consider the maximum problem

1
RE

= sup
(c,w)∈H

−

∫
Ωi

cw
∂C0

∂z∫
Ωi

|∇c|2
. (63)

Suppose this maximum problem has a solution (i.e. there exists such a RE ∈ (0,∞)). Then any
solution of (25), (26), and (28) satisfies

1
RE
>

−

∫
Ωi

cw
∂C0

∂z∫
Ωi

|∇c|2
,

and thus for any R<RE one obtains from (61)

1
2

d
dt

∫
Ωi

c2 6 −
(
1−

R
RE

) ∫
Ωi

|∇c|2 < 0 .

Hence for R<RE the system is unconditionally stable.

Maximum problem (63) is equivalent to the following minimum problem: Find the smallest
RE>0 so that

inf
(c,w)∈H

{∫
Ωi

|∇c|2 + RE

∫
Ωi

cw
∂C0

∂z

}
= 0 . (64)

To solve (64), we introduce the functional

J(c, w,π; R) =
∫

Ωi

|∇c|2 + R
∫

Ωi

cw
∂C0

∂z
+

∫
Ωi

π

[
∇ ·

(
1
κ(z)
∇w

)
− ∆⊥c

]
, (65)

where π acts as a Lagrange multiplier. We need to find points (c, w,π), with (c, w)∈H and π
is Ωi-periodic, limz→∞ π(z)=0, and values of R where the first variation of (65) vanishes. This
leads to the Euler–Lagrange equations

−2∆c + R
∂C0

∂z
w = ∆⊥π , (66a)

∇ ·

(
1
κ(z)
∇π

)
= −R

∂C0

∂z
c , (66b)

∇ ·

(
1
κ(z)
∇w

)
= ∆⊥c , (66c)

in Ωi. Moreover, ∂π∂z (0)=0 appears as a natural boundary condition. Details of the derivation
are given in Appendix D.

Thus far Ωi has been left general. Explicitly considering periodicity of the form (41) for c, π,
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and w, which is allowed since the equations in (66) are linear, yields the eigenvalue problem

(PE)



Find the smallest R>0 so that the system

d2c
dz2 − a2c =

1
2

R
∂C0

∂z
w +

1
2

a2π

−
d
dz

(
1
κ(z)

dπ
dz

)
+

a2

κ(z)
π = R

∂C0

∂z
c

−
d
dz

(
1
κ(z)

dw
dz

)
+

a2

κ(z)
w = a2c


for z>0 , (67a)

with c, w, and π satisfying

c =
dw
dz

=
dπ
dz

= 0 at z=0 , (67b)

c→ 0, w→ 0, π→ 0 as z→∞ , (67c)

has a nontrivial solution.

Here the smallest positive eigenvalue is denoted by RE=RE(a, t). We return to this problem in
Section 6.

6. Stability results

6.1. Homogeneous soils

When considering homogeneous soils, we set κ(z) = 1 in problems (PL) and (PE). We show
below that this makes it possible to eliminate the time t from the eigenvalue problems. As a
consequence we obtain a clear interpretation of the role of a, RS and t in the stability behaviour.

6.1.1 Eigenvalue approach

Since

∂C0(z, t)
∂z

= −
1
√
πt

e−
z2
4t ,

we can remove t from (PL) and (PE) by introducing the variables

η :=
z
√

t
, {c, w,π}(η) := {c, w,π}(z, t) , b := a

√
t , and R∗ :=

√
t
π

R . (68)
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This yields the transformed problems

(P∗L)



Find smallest R>0 so that the system

−
d2c
dη2 + b2c = R∗we−η

2/4

−
d2w
dη2 + b2w = b2c

 for η>0 , (69)

with c and w satisfying

c = 0,
dw
dη

= 0 at η=0 ,

c→ 0, w→ 0 as η→∞ ,

has a nontrivial solution,

and

(P∗E)



Find smallest R>0 so that the system

−
d2c
dη2 + b2c =

R∗

2
we−η

2/4
−

b2

2
π

−
d2π

dη2 + b2π = −R∗ce−η
2/4

−
d2w
dη2 + b2w = b2c


for η>0 , (70)

with c, w, and π satisfying

c =
dw
dη

=
dπ
dη

= 0 at η=0 ,

c→ 0, w→ 0, π→ 0 as η→∞ .

has a nontrivial solution.

Hence, the eigenvalue problems are written in terms of the same similarity variable as the ground
state C0(z, t).

To find the smallest possible eigenvalues for b> 0, we solve (P∗L) and (P∗E) by means of a
Chebyshev–Petrov–Galerkin spectral method. Details and references are given in Appendix H.
The result is shown in Figure 4. Note that R∗L(b) > R∗E(b) for all b > 0, but the difference is
small for b> 0.5. This is different from the salt lake problem (van Duijn et al. (2002)), where
there is a significant gap between RL and RE. In this gap small perturbations vanish, but large
perturbations may grow in time. Since for all practical purposes, see Figure 4,

R∗L(b) ≈ R∗E(b) for b>0, say , (71)

the ponded problem considered in this paper has a sharp stability bound: below R∗E there is
unconditional stability and above R∗L instability.

Remark 4 For case a there is no defined system Rayleigh number RS. However, one still has the Rayleigh
number R∗ showing up in the eigenvalue problems due to the similarity transformation. This system

Rayleigh number then refers to time only, as R∗=
√

t
π .
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Fig. 4: Stability curves for the ponded case, according to the direct approach R∗M, method of linearised stability R∗L
and energy method with differential constraint R∗E.

Remark 5 Using Green’s functions, one can write w and π in (P∗L) and (P∗E) in terms of c. Substituting
this into (69) and (70), and applying again the Green’s functions, yields eigenvalue problems in terms of
integral equations for c. These transformations and some mathematical properties of the integral forms
are detailed in Appendix F. In particular, since c(0)= dw

dη (0)=
dπ
dη (0)= 0, the corresponding integral

equations are non-selfadjoint.
We show in Appendix E that both R∗L(b) and R∗E(b) have the lower bound:

R∗L(b), R∗E(b) > b2 for all b>0 .

This estimate is obtained by manipulating the equations in (P∗L) and (P∗E). Recalling that, see (53) with
κ=1, RM=RM(a, t)=a2

√
πt, we find after applying (68),

R∗M(b) =

√
t
π

RM = b2 .

Hence the stability bound obtained by the direct L2-estimate of the linearized equations is a lower bound
for both R∗L(b) and R∗E(b).

6.1.2 Stability interpretation

How to interpret and estimate the (in)stability from Figure 4? For simplicity we assume that
(71) holds. The fact that R∗L(b)>R∗E(b) close to b=0 requires only a minor modification of the
argument. Let a>0 be a given wavenumber and let RS be the system Rayleigh number. In view
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where R∗(b) lies below R∗E(b) - system unconditional stable for chosen (a, RS) value; (b) border case where
R∗(b) touches R∗E(b) at b=b∗; (c) case where R∗(b) intersects R∗L(b) in b∗L and b∗R.

of (68) we have

case a R∗S =

√
t
π

=
b

a
√
π

=: R∗S(b) .

case b R∗S =

√
t
π

RS =
RS

a
√
π

b =: R∗S(b) .

(72)

Hence R∗S(b) is a straight line passing through the origin in the (b, R∗)-plane. With reference to
Figure 5, three cases can be distinguished, depending on whether the straight line lies (a) entirely
below R∗E, or (b) touches R∗E at b∗, or (c) intersects R∗E at b∗L and b∗R. We successively consider cases
(b), (a), and (c).

Let α>0 be such that the line αb is below R∗E(b), except at b=b∗ where it touches R∗E:

αb∗ = R∗E(b
∗) and αb < R∗E(b) for b,b∗ . (73)

Numerically we found

α = αcrit ≈
6.82
√
π
≈ 3.85 and b = b∗ ≈ 1.01 .

Writing R∗(b)=αb, we have for α<αcrit

R∗(b) < R∗E(b) for all b>0 .
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Thus if

case a
1

a
√
π
< αcrit or a >

1
6.82

,

case b
RS

a
√
π
< αcrit or a >

RS
6.82

,

then the ground state is unconditional stable.
How to interpret the result?

case a: When considering a specific horizontal structure, for certain `x and `y, the wavenumber
a has the discrete values

an,m =

√(nπ
`x

)2
+

(
mπ
`y

)2

n, m=1, 2, · · · .

Thus if the smallest value a1,1 satisfies

a1,1 =

√(
π
`x

)2
+

(
π
`y

)2

>
1

6.82
, (74)

then the ground state is L2-stable for perturbations that are x, y-periodic with respect to a
rectangular structure with `x and `y satisfying (74). But perturbations with larger wavelengths
(or smaller wavenumbers) may grow in time to form finger-like patterns.

case b: Then a takes the discrete values

an,m =

√
n2 +

(m
`

)2
n, m=1, 2, · · · .

If the horizontal dimensions of the vertical column ΩB satisfy

a1,1 =

√
1 +

(1
`

)2
>

RS
6.82

, (75)

then the ground state is L2-stable in ΩB implying that no fingers can occur as a result of initial
perturbations.

If α > αcrit, then R∗S(b) intersects R∗L(b) ≈ R∗E(b) at the points b∗L and b∗R as indicated in
Figure 5:

R∗S(b) > R∗E(b) for b∗L<b<b∗R and R∗S(b) < R∗E(b) elsewhere .

Clearly the intersection points b∗L and b∗R depend on a and RS: b∗i = b∗i (a, RS) for i= L, R. For a
given system Rayleigh number RS, the boundary curves in the (a, t)-plane corresponding to
a
√

t = b∗i (a, RS) (i=L, R) are shown in Figure 6 (Left: case a, Right: case b). These curves meet

when RS
a =6.82, since then b∗L=b∗R = b∗.

Above the composite curve (red and blue curves in Figure 5) one has L2-stability and below
the curve small perturbations grow in time. Let a=a1,1, see (74) or (75), denote again the smallest
wavenumber for a given ΩA or ΩB: i.e. the most unstable mode for a given geometry. Then,
with reference to Figure 6, perturbations decay in time when 0 < t < tL(a), they grow when
tL(a)< t< tR(a), and finally again decay when t> tR(a). Here ti(a)=(b∗i /a)2 with i=L, R.

In Section 7 we return to Figures 5 and 6 for the interpretation in terms of the physical
parameters.
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Fig. 6: Regions of (in)stability in (t, a)-plane. The blue curves correspond to t = (b∗R/a)2, and the red curves to
t=(b∗L/a)2. (A): case a. (B): case b for RS = 20, RS = 15, and RS = 6.82. For the maxima it holds that
a= b∗/

√
t. For t< tL(a) and t> tR(a) the system is stable (indicated by s), while for tL(a)< t< tR(a) the

system has an episode of transient instability (indicated by u): perturbations having wave number a will first
decay, then grow and eventually decay again in time.
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6.1.3 Direct numerical simulations

To verify and interpret our theoretical findings we make a comparison with the nonlinear
dynamics described by the full set of equations (14). To this end we perform direct numerical
simulations of (14) in two-dimensional cells:

case a Ω̂d
A := Ωd

A ∩ {y=0} ;

case b Ω̂d
B := Ωd

B ∩ {y=0} ,

see also Figure 2.
Having a two-dimensional flow domain in which ∇ ·U = 0, allows us to formulate the

convective flow part in (14) in terms of the stream function Ψ ; i.e.

U = (qx, qz) where qx = −
∂Ψ
∂z

, qz =
∂Ψ
∂x

. (76)

Taking the two-dimensional curl of the Darcy equation (14b) and substituting (76) into the result
gives for Ψ the equation (de Josselin de Jong, 1960; Bear, 1972)

∇ ·

(
1
κ(z)
∇Ψ

)
=
∂C
∂x

. (77)

In the computations presented in this Section we use κ(z) = 1, since the soil is considered
homogeneous. Later, in Section 6.2, we allow κ=κ(z).

The salt transport equation in terms of Ψ becomes

∂C
∂t

+ R
(
∂Ψ
∂x

∂C
∂z
−
∂Ψ
∂z

∂C
∂x

)
= ∆C . (78)

At the top Γ3 we have P=1. This means that 1
κ(0)qx=−

∂P
∂x =0 at Γ3. Hence from (76)

C = 1 and
∂Ψ
∂z

= 0 at Γ3 . (79)

At the bottom Γ1 we prescribe C=0 and ∂P
∂z =0, see (14c). This means that 1

κ(d)qz=0 at Γ1. Hence,
again from (76),

C = 0 and Ψ = constant = 0 at Γ1 . (80)

For case a, we impose periodic boundary conditions on C and Ψ along the vertical boundary Γv.
This means that for all t>0

C|Γ2 = C|Γ4 ,
∂C
∂x

∣∣∣∣∣
Γ2

=
∂C
∂x

∣∣∣∣∣
Γ4

, (81)

and

Ψ |Γ2 = Ψ |Γ4 ,
∂Ψ
∂x

∣∣∣∣∣
Γ2

=
∂Ψ
∂x

∣∣∣∣∣
Γ4

. (82)

For case bwe impose no-flow and no-transport conditions along Γv, i.e. for t>0

∂C
∂x

∣∣∣∣∣
Γ2

=
∂C
∂x

∣∣∣∣∣
Γ4

= 0 , (83)

and

∂Ψ
∂z

∣∣∣∣∣
Γ2

=
∂Ψ
∂z

∣∣∣∣∣
Γ4

= 0 . (84)
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We prescribe an initial concentration

C(x, z, 0) = Ci(x, z) (85)

in Ω̂d
A for case a or Ω̂d

B for case b. Equations (77) and (78) and conditions (79)–(85) define the
problem (NSP), the Numerical–Solution–Problem. This problem has a unique solution {C,Ψ } for
any reasonable initial concentration (85), e.g. see Clément et al. (1992).

Remark 6 Repeating Ω̂d
A in horizontal direction yields a smooth 2`x-periodic solution in the strip

Ωd := {0<z<d}. If the initial concentration Ci is symmetric with respect to x=0, then the same holds
for the evolving concentration C and anti-symmetry holds for the corresponding stream function Ψ : i.e.

C(x, z, t) = C(−x, z, t) ,

Ψ(x, z, t)=−Ψ(−x, z, t)

 for (x, z) ∈ Ω̂d
A and t>0 .

In view of the periodic boundary conditions this implies

∂C
∂x

∣∣∣∣∣
Γ2

=
∂C
∂x

∣∣∣∣∣
Γ4

= 0

and

Ψ |Γ2 = Ψ |Γ4 = 0

for all t>0. Thus for symmetric initial data, there is no transport across the vertical boundaries. Clearly,
this does not hold for arbitrary initial data.

Problem (NSP) is solved by means of a characteristic–Galerkin finite element method. In the
method, the convective operator is split from the diffusive one and is written in the form of the
material derivative. A detailed description of this method is given in Appendix I.

Let the flow domain Ω̂d
i , with i=A, B, be discretized by a set of elements, forming a mesh

M. The element size of the mesh M will be denoted by ∆M. Further, time is discretized by
the time-grid tn :=n∆t, n=1, 2, · · · , N. We denote the numerical solution of problem (NSP) by
{C̃n

m, Ψ̃n
m}, where m indexes over the elements in M, and n indexes over a discrete time grid.

To quantify the temporal behavior of the full system subject to an initial perturbation, we
consider as a stability measure the discrete L2-norm in Ωi:

E(tn) :=

√ ∑
m∈M

wm
[
C̃n

m − C̃n
0,m

]2
.

In this definition, we do not use the analytical ground state C0 evaluated per element and
time-grid point, but rather its numerical approximation C̃n

0,m.
We discuss (direct) numerical simulations for both case a and case b. For case a, an overview

of the stability results is shown in Table 2. There we present for different wavenumbers a stability
overview based on the eigenvalue approach (Figure 6 (A)) and on direct numerical simulations
using the quantity E(t) (Figure 7 (A)). The stability behavior in Table 2 is derived from Figure 6
(A) and Figure 7 (A). Figure 8 shows direct numerical simulations of the salt concentration for the
cases 6, 7, and 8. In those simulations we have used ∆M=π/5≈0.6, ∆t=0.05, and N=50000
which corresponds to a (dimensionless) time horizon of 2500. Further, we perturb the initial
concentration by a small symmetric (with respect to x=0) perturbation of the form

C(x, z, 0) = ε cos a1,1x , (86)
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Table 2: Overview of the selected geometries for case a and their stability (S = stable, U = unstable episode).

# `x d a1,1 Figure 6 (A) Figure 7 (A)

1 5π 250 0.2 S S

2 6π 250 0.167 S S

3 7π 250 0.143 S S

4 8π 250 0.125 U U

5 9π 250 0.111 U U

6 10π 250 0.1 U U

7 11π 250 0.0909 U U

8 12π 250 0.0833 U U

Table 3: Overview of the selected system Rayleigh numbers for case b and their stability (S = stable, U = unstable
episode).

# RS d a1,1 Figure 6 (B) Figure 7 (B)

1 1 50 1 S S

2 6 50 1 S S

3 8 50 1 U U

4 9 50 1 U U

5 10 50 1 U U

6 12 50 1 U U

7 15 50 1 U U

8 20 50 1 U U

in which ε=0.001.
For case b we have a fixed geometrical configuration (i.e. a1,1 ≡ 1). An overview of the

stability results is shown in Table 3. There we present for different Rayleigh numbers a stability
overview based on the eigenvalue approach (Figure 6 (B)) and on direct numerical simulations
using the quantity E(t) (Figure 7 (B)). This time the stability behavior in Table 3 is derived from
Figure 6 (B). Figure 9 shows direct numerical simulations of the salt concentration for the cases
1, 7, and 8. In those simulations we have used ∆M= 0.15, ∆t = 0.005, and N = 30000 which
corresponds to a (dimensionless) time horizon of 150.

Figure 7 (A) shows E over time for an `x range as given in Table 2. For `x = 5π we have a
monotonically decreasing E, which means that the solution remains close to the ground state
C0(z, t) and the discrete L2(ΩA)-norm of the perturbation decays in time. Growth is observed
for `x>7π: there exists a time t∗ and t∗∗ for which

E′(t) < 0 for 0< t< t∗ ,

E′(t) > 0 for t∗< t< t∗∗ ,

E′(t) < 0 for t> t∗∗ .

Here ’ denotes the derivative with respect to time. The interval (t∗, t∗∗) is referred to as the unstable
episode obtained by direct numerical simulations. Numerically we find that it is consistent with
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Fig. 7: E(t) on a log-log scale, for a homogeneous porous column. (A): case a, with data from Table 2. (B): case b,
with data from Table 3.

the theoretical predicted range (tL(a1,1), tR(a1,1)), as given by Figure 6:

tL(a1,1) < t∗ < t∗∗ < tR(a1,1) .

For example, `x=8π (a1,1=0.125) yields

(tL(0.125), tR(0.125)) = (13, 290) and (t∗, t∗∗) = (88, 277) .

Note that the threshold value `x=7π is slightly larger than the theoretically predicted value of
6.82π.

Figure 7 (B) shows again E over time for an RS range as given by Table 3. For RS=1 we have
a monotonically decreasing E(t), which means that the solution remains close to the ground
state C0(z, t) and the discrete L2(ΩB)-norm of the perturbation decays in time. For the other two
numerical experiments we find

(tL(1), tR(1)) = (0.024, 39.25) and (t∗, t∗∗) = (0.32, 7.7) for RS=15, a1,1=1 ,

(tL(1), tR(1)) = (0.11, 84) and (t∗, t∗∗) = (0.17, 7.8) for RS=20, a1,1=1 .

Also note that for those two system Rayleigh numbers, the used wavenumber of the initial
perturbation (a=1) is relatively far away from its critical value 2.2 and 2.93, respectively (see
also Figure 6, right). As a result, the numerical bounds are not sharp with respect to their
corresponding theoretical bounds.

Remark 7 As can be observed in Figure 7, quantity E decays to zero for large times, indicating that
the system will return to some one-dimensional profile. However, this profile is not the one-dimensional
ground state solution due to the transient convective instability. The long-term one-dimensional profile
can still be considered as the solution of (17), but with an adjusted initial condition.

The concentration profiles as function of time are presented in Figure 8 for case a, and Figure 9
for case b. In both cases, we observe for the selected cases episodes of (transient) instability. The
instability introduces convective flow for a specific period of time. This convective dominated
regime enhances the diffusive downward transport of salt into the porous column. The speed of
the finger tips is higher for larger domains (case a) and larger Rayleigh numbers (case b). Along
Γ3, near the corners, there is upward flow. Such upward flow was observed experimentally by
Webster et al. (1996). The combination of the concentration boundary condition along Γ3 and
upward flow leads near the corners to a thin concentration boundary layer.
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Fig. 9: Concentration profiles as function of time for case b: (A) RS =1.0. This represents a stable configuration in
which only diffusive transport takes place. (B) and (C): RS =15 and RS =20 respectively. Here there exists
episodes of instability.
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6.2. Layered soils

Until now, we assumed for case a and case b homogeneous media only. We now consider,
for case b only, a heterogeneous medium having three layers, in which one of the layers has a
reduced permeability. The layered permeability structure is represented by

κ(z) =


κ in

{
(x, z) ∈ Ω̂d

A : d1 < z < d2, 0 < d1 < d2 < d
}

1 elsewhere.

Since the dimensional permeability is scaled by κ, we have κ61.
In each vertical layer, the permeability is assumed to be constant. Hence, in each layer a ’local’

system Rayleigh number, denoted by RκS, can be defined. We consider two values for κ: 0.5 and
0.05. The layer parameters d1, d2, and d are given by 3, 5 and 50 respectively. The initial condition
is again symmetrically perturbed by (86) with a1,1≡1.

Numerical simulations for this three-layer setup are shown in Figure 10 for a system Rayleigh
number RS=20. This Rayleigh number corresponds to a system with an unstable episode, see
also Table 3: The perturbation develops in layer I until the finger tip reaches z= d1, the start
of the layer II. The finger pattern travels through layer II and as can be clearly seen for t= 4
and t=5, the finger has become more narrow. For the special case in which layer II is almost
impermeable, the convection cells in layer I develop and disappear over time again, wheareas in
layer III a reverse process takes place: no convection cells exist for small times, but for larger
times they appear. However, for RS=20 those convection cells in layer III are too weak to create a
finger structure. Ultimately, the finger structure disappears and diffusion becomes the dominant
process again.

The effect of κ is also reflected by the stability measure E(t), as shown in Figure 11. For
smaller values of κ, we observe a shorter episode of instability (t∗, t∗∗). Further, the magnitude of
the growing instability is, as to be expected, less pronounced because the almost impermeable
layer blocks the convective transport of the finger to deeper regions.

7. Interpretation in terms of dimensional physical parameters

Thus far the entire analytical and numerical analysis has been carried out in terms of dimensionless
variables. In the concrete, dimensional world, the analysis covers a vast number of special cases.
To interpret the results for specific cases, one has to return to dimensional variables by multiplying
the dimensionless variables by the corresponding characteristic scales. We use subscript D to
denote the dimensional variables. Specifically, multiplying the spatial dimensionless coordinates
x, y, z by the characteristic length scale Lc gives spatial dimensional coordinates xD, yD, zD and
multiplying the dimensionless time t by the characteristic time Tc gives the dimensional time tD:

{xD, yD, zD}= {Lcx, Lcy, Lcz} and tD=Tct . (87)

Also of interest are the dimensional wave number aD and wave length λD given by

aD=aL−1
c and λD=Lcλ where λD =

2π
aD

. (88)

To illustrate the conversion, we use the typical values of quantities listed in Table 4. Introducing
the values of φ, ρ f , ρs, g, µ, κc and D from Table 4 in Table 1 gives the characteristic scales for
discharge (Qc), length (Lc), time (Tc), pressure (Pc), and Rayleigh number R. If κc is left to be
chosen, then Table 5 results.

Motivated by solute exchange by convection within estuarine sediments, Webster et al. (1996)
made an experimental and numerical analysis of unstable penetration of ponded saline water
into a layer of porous medium initially saturated with fresh water, using κc=5.4× 10−11m2.
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Fig. 10: Concentration profiles as function of time for case b with RS =20. The porous medium is divided in three
layers: I, II, and III. Layer II has a different permeability, and is shown in gray. Layers I and II have
permeability κ=1. The following permeability values for layer II are considered: κ=1.0 (A; for reference),
κ=0.5 (B), and κ=0.05 (C).
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Fig. 11: E(t) on a log-log scale, for a heterogeneous porous column. The numbers between brackets represent κ in
layer II.

Post and Kooi (2003); Post (2004) numerically modeled the rates of salinization in the high-
permeability Pleistocene coastal aquifer of the Netherlands, using κc=10−11m2. More or less in
line with those values of κc, we consider in the first instance a porous medium with κc=10−12m2

and subsequently infer results for coarser porous media with larger values of κc and for finer
porous media with lower values of κc. Substitution of κc=10−12m2 in Table 5 gives the values of
Qc, Lc, Tc, Pc and R in Table 6.

Table 4: Typical values or ranges of values of physical quantities, using the International System of Units (SI).

φ porosity −− 0.35

ρ f fresh water density ML−3 1000 kg/m3

ρs sea water density ML−3 1025 kg/m3

g acceleration of gravity LT−2 10 m/s

µ viscosity ML−1T−1 10−3 kg/m/s

κc permeability L2 in range 10−10–10−16 m2

D diffusivity L2T−1 1.5× 10−9 m2/s

7.1. Laterally unbounded case a

According to Table 5 (left column), for case a the Rayleigh number R=1 and the characteristic
scales Qc, Lc, Tc and Pc are proportional to powers of the characteristic permeability κc. To the
wide range of values of κc in Table 4 from 10−10 m2 for very coarse porous media to 10−16 m2 for
very fine porous media correspond wide ranges of the values of the scales Qc, Lc, Tc and Pc.

The approximate equality of the stability bounds from the linear and energy stability led for
case a to the dimensionless condition (74) for L2-stability:

a1,1 =

√(
π
`x

)2
+

(
π
`y

)2

>
1

6.82
. (89)
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Table 5: Overview of parameters for case a and case b obtained by substitution in Table 1 the values for φ, ρ f , ρs,
g, µ and D from Table 4.

laterally unbounded case a laterally bounded case b

Qc = 250× 103κc

Lc = 6× 10−15κ−1
c Lc = 0.3183Lx

Tc = 8.4× 10−21κ−2
c Tc = 0.02364× 109L2

x

Pc = 1.5× 10−12κ−1
c Pc = 79.58Lx

R = 1 R = 53.05× 1012κcLx

Table 6: Overview of parameters for case a and case b obtained by setting κc =10−12m2 in Table 5.

laterally unbounded case a laterally bounded case b

Qc = 250× 10−9

Lc = 6× 10−3 Lc = 0.3183Lx

Tc = 8.4× 103 Tc = 0.02364× 109L2
x

Pc = 1.5 Pc = 79.58Lx

R = 1 R = 53.05Lx

In dimensional variables, this is equivalent to:

a1,1,D =

√(
π
`x

)2
+

(
π
`y

)2

L−1
c >

L−1
c

6.82
,

where Lc given by the left hand side column in Table 5. Only perturbations with wave numbers
that are smaller will grow and decay in a certain time interval tL,D=TctL to tR,D=TctR, where tL
and tR can be read from Figure 6 (A). The corresponding condition for the wave length is derived
from (89):

λD =
2π

a1,1,D
6 42.85Lc .

Only perturbations with wave lengths that are larger will grow and decay in a certain time
interval tL,D=TctL to tR,D=TctR.

Using the values in the left column of Table 6, Table 2 is translated to dimensional form
by multiplying `x and d by Lc = 6 × 10−3m. Figure 7 (A) is translated to dimensional form
by multiplying the t-axis by Tc = 8.4 × 103s and `x by Lc = 6 × 10−3m. The dimensionless
numerical results shown in Figure 8 are be translated to dimensional form by multiplying the
depth d = 250 and the column width `x = 10, 11, and 12 by Lc = 6 × 10−3m, giving dD = 1.5m
and `xD = 6.0, 6.6, 7.2cm and the times t = 200, 500, · · · , 3500 by Tc = 8.4 × 103s giving tD =
24.25, 48.50, · · · , 339 days.

For a finer porous medium with a 10-fold smaller value κc = 10−13m2, the values of `xD =
60, 66, 72cm are 10-fold larger and the values of tD = 6.64, 13.29, · · · , 93.01 years are 100-fold
larger.

For a coarser porous medium with a 10-fold larger value κc = 10−11m2, the values of
`xD=6.0, 6.6, 7.2mm are 10-fold smaller and the values of tD=0.2425, 0.4850, · · · , 3.3950 days are
100-fold smaller. For still coarser porous media, the width of the fingers will eventually be of the
same order as as the size of the pores, so that the limit of the Darcy model will be approached.
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7.2. Laterally bounded case b

According to Table 5 (right column), for case b, the characteristic length scale Lc and pressure
scale Pc and the Rayleigh number R depend linearly on the horizontal length scale Lx, while for
the time scale Tc this dependence is quadratic; further, the flux scale Qc and R are proportional to
κc. With the wide range of values of κc in Table 4, the corresponding wide range of values of the
Rayleigh number R is 53.05× 102Lx for very coarse porous media to 53.05× 10−4Lx for very fine
porous media.

From the expression for R in Table 5 (right column) it follows that:

Lx = 1.89× 10−14κc
−1R m . (90)

Introducing (90) in the expressions for characteristic length scale Lc and time scale Tc in Table 5
(right column) gives:

Lc = 6.02× 10−15κc
−1R m, i.e. Lc = 6.02× 10−3R m if κc = 10−12 m2 , (91)

and

Tc = 8.323× 10−21κc
−1R2 s, i.e. Tc = 8.323× 10−9R2 s if κc = 10−12 m2 . (92)

For a finer porous medium with a 10-fold smaller permeability κc =10−13m2, the values of Lc
are 10-fold larger and the values of Tc are 100-fold larger. For a coarser porous medium with a
10-fold larger permeability κc=10−11m2, the values of Lc are 10-fold smaller and the values of Tc
are 100-fold smaller.

The approximate equality of the stability bounds from the linear and energy methods led for
case b to the dimensionless condition (75) for L2-stability:

a1,1 =

√
1 +

(1
`

)2
>

RS
6.82

. (93)

Here ` represents the aspect ratio of a rectangular box (0, Lx) × (0, Ly), i.e. ` = Ly/Lx. In
dimensional variables this is equivalent to:

a1,1,D =

√
1 +

(
Lx

Ly

)2

L−1
c >

RSL−1
c

6.82
,

where Lc given by the right hand side column in Table 5. Only perturbations with wave numbers
that are smaller will grow and decay in a certain time interval tL,D=TctL to tR,D=TctR, where tL
and tR, for a given RS, can be read from Figure 6 (B). The corresponding condition for the wave
length is derived from (93):

λD =
2π

a1,1,D
6 42.85LcR−1

S .

Only perturbations with wave lengths that are larger will grow and decay in a certain time
interval tL,D=TctL to tR,D=TctR.

Criterion (93) means that in a rectangular column the ground state is L2-stable provided

RS < 6.82

√
1 +

1
`2 , (94)

or, using Table 1,

κc(ρs − ρ f )gLx

µD
< 21.43

√
1 +

1
`2 . (95)
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When the cross-section is a square, i.e. `=1, L2-stability holds if

κc(ρs − ρ f )gLx

µD
< 30.30 . (96)

In practice, experiments are often performed in cylindrical columns see e.g. Wooding (1959).
Suppose we consider in case b a semi-infinite cylinder of radius R. This radius will then be
used, conform case b, in the characteristic length scale Lc=

R
π . Then instead of (36), we have

ΩB = {(x, y, z) :
√

x2 + y2 < π, z > 0} .

As in (33), we need to consider now the eigenvalue problem
∆⊥ f + a2 f = 0 in {(r,ϕ) : 0 < r < π, 0 6 ϕ < 2π} , (97a)

∇⊥ f · n
∣∣∣
r=π = 0 . (97b)

In particular, for the given geometry, one needs to determine the smallest a> 0 for which the
eigenvalue problem (97) has a solution. As explained in Section 6.1.2, this solution describes the
most unstable mode.

Solutions of (97a) are found by separation of variables:

f (r,ϕ) = Jm(ar) cos mϕ , (98)

where Jm denotes the Bessel function of the first kind of order m. Boundary condition (97b) is
satisfied when

J′m(aπ) = 0 (′ denotes differentiation) ,

or

a = an,m =
βn,m

π
n = 1, 2, · · · and m = 0, 1, 2, · · · ,

where βn,m is the nth positive zero of J′m. Clearly

min
n=1,2,...

m=0,1,2,···

βn,m = min
m=0,1,2,···

β1,m .

Looking up the zeros of J′m in Weisstein gives

min
m=0,1,2,···

β1,m = β1,1 = 1.8412 .

This yields a= â1,1=
β1,1
π as the smallest a>0 for which (97) has a non-trivial solution. Using â1,1

in (93) yields for cylinders the stability criterion

κc(ρs − ρ f )gR
µD

< 12.56 . (99)

Flow patterns corresponding to (98) are discussed in Appendix B.
The dimensionless time axis of Figure 7 for the stability measures E is translated to a

dimensional time axis by multiplying it by the characteristic time Tc given by (92). Since Tc is
proportional to R2

S, the tendency is that the transient instability occurs later for larger RS.
The dimensionless numerical results shown in Figure 9 are be translated to dimensional

form by multiplying the dimensionless depth d = 75 and column width 2π by the linearly
R dependent characteristic length Lc given by (91) and multiplying the dimensionless times
t=1, 2, 3, 4, 5, 10, 15, 20, 30, 35 by the quadratically R dependent characteristic time Tc is given by
(92).
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8. Conclusions

We analyzed the stability of the density-depth profiles in porous media initially saturated with a
stagnant fluid of density ρ f after flooding with a salt solution of higher density ρs. Such flooding
of coastal areas with seawater regularly occurs, either due to climatological circumstances or as
part of engineering projects. Historically, flooding was sometimes also imposed as a defensive
measure.

We used the standard convection-diffusion equation subject to the so-called Boussinesq
approximation. The variable density arising from the diffusive penetration of salt then affects
the fluid flow only by its effect on the gravitational driving force in the Darcy equation. To
explore the density difference induced flow, we used both analytical and numerical methods. We
assumed the depth of the porous medium to be infinite in the analytical approaches and finite in
the numerical analyses. Geometrically, two cases were distinguished: the laterally unbounded
case a and the laterally bounded case b. The ratio of the diffusivity D and the density difference
induced gravitational shear flow (κc/µ)(ρs − ρ f )g is an intrinsic length scale of the problem.
In the unbounded case a, this is the only length scale and using it leads to a dimensionless
formulation with Rayleigh number R=1. In the bounded case b, the lateral geometry provides
another length scale and using it leads to a dimensionless formulation with a Rayleigh number R
given by the ratio of the geometric and intrinsic length scales.

The analytical approaches lead to general statements about stability or instability under given
circumstances. The background diffusion of salt from the ponded layer into the fluid saturated
porous medium, the so-called ground state solution, is expressed in terms of the Boltzmann
similarity variable z/

√
t. Three methods were used to study the stability of this ground state, the

first two based on the linearized perturbation equation for the concentration and the third based
on the full nonlinear perturbation equation. They yield eigenvalue problems that contain the
horizontal wave number a and the Rayleigh number R as parameters. For homogeneous soils,
using the Boltzmann variable z/

√
t, the time t can be eliminated from the eigenvalue problem by

absorbing
√

t into a and R: b= a
√

t and R∗=R
√

t. This time-independence of the eigenvalue
problems leads to the three stability curves relating the transformed Rayleigh number R∗ and
wave number b shown in Figures 4.

For the first linear approach, the surface spatial density gradient was used as an approximation
of the entire background density profile. This results in a crude estimate of the L2-norm of the
concentration shown in Figure 3, with the perturbation at first growing, but eventually decaying
in time.

For the second linear approach, the full ground state solution subject to the restriction that the
ground state slowly evolves in time was used: the so-called ’frozen profile approximation’. This
method of linearized stability only holds for infinitesimal perturbations. To get results for larger
perturbations, a specific version of the variational energy method was used to estimate from
the full nonlinear perturbation equation the L2-norm of the concentration perturbation c. The
stability curve R∗L(b) resulting from the linearized perturbation approach is surprisingly close to
the stability curve R∗E(b) resulting from the variational energy method. This means that there is
only a small gap between stability curves R∗L(b) and R∗E(b) in which small perturbations vanish,
but large perturbations may grow. In this respect the current problem differs markedly from the
problem with an imposed vertical background flow analyzed earlier (van Duijn et al., 2002), for
which the gap was found to be large. The ponded problem considered in this paper has a sharp
stability bound: below R∗E there is unconditional stability and above R∗L instability. The curve
R∗M=b2 resulting from the first linear approach is shown to be a lower bound for both R∗L and R∗E.

For both case a and case b, the
√

t transformed system Rayleigh number R∗S=RS
√

t is a linear
function of the

√
t transformed system wave number b. To determine the stability for a particular

wave number b - system Rayleigh number RS combination, three cases can be distinguished,
depending on whether the straight line R∗S =αb lies entirely below R∗E, touches R∗E at b= b∗, or
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intersects R∗E at b∗L and b∗R. Numerically it was found that the line with α=αcrit = 3.85 touches
R∗E at (R∗, b) = (3.89, 1.01). For α<αcrit the ground state is unconditionally stable. For α>αcrit
the ground state is unconditionally stable for b< b∗L and b> b∗R and experiences an episode of
transient instability for b∗L<b<b∗R.

In Sub-subsection 6.1.2, by reversal of the Boltzmann transformations the analytical stability
results were interpreted for both case a and case b in terms of system Rayleigh number RS,
wave number a and time t (see in particular Figure 6). In Sub-subsection 6.1.3 these results were
compared with direct numerical simulations based on the full, spatially 2-D flow and transport
equations in x, z, t, with a range of lateral length scales for case a (see Table 2) and a range of
system Rayleigh numbers for case b (see Table 3). Qualitatively, the numerical results turned out
to agree with the eigenvalue results. They also clearly show the details of the episodic instabilities
as function of the wave number for case a and of the wave number and system Rayleigh number
for case b. The episodic instability clearly leads to deeper penetration of salt.

The case of a layered soil was considered in Section 6.2. There the Boltzmann transformation
does not apply and one has to rely on numerical techniques. Results of the salt distribution in
an aquifer having a horizontal and lower permeable layer are shown in Figure 10. This figure
clearly demonstrates the effect of the layer acting as a barrier for the flow and thus for the salt
transport. This illustrates the protective role of low-permeability layers against invasion of saline
water into underlying fresh water mentioned in the Introduction.

In Section 7 it was shown how the dimensionless analytical and numerical results can be
translated to dimensional form and thereby interpreted in terms of dimensional length and time
scales. This provided an opportunity to highlight the important role of the permeability of the
porous medium: the higher the permeability the stronger is the destabilizing influence of the
gravitational force.

The laterally bounded case b with its no-flow and no-solute transport conditions at the
vertical boundary Γν is not restricted to rectangles and hexagons, but covers columns of any
shape, such as the cylinders discussed at the end of Section 7. Thus it provides a good basis
for the interpretation of experiments in columns. In particular, column experiments are stable
provided, see also (95), (96), and (99):

(i) Rectangular cross-section (0, Lx) × (0, Ly)

κc(ρs − ρ f )gLx

µD
< 21.43

√
1 +

1
`2 , ` =

Ly

Lx
;

(ii) Square cross-section (0, Lx) × (0, Lx)

κc(ρs − ρ f )gLx

µD
< 30.30 ;

(iii) Circular cross-section with radius R

κc(ρs − ρ f )gR
µD

< 12.56 .
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A. Cell patterns (Chandrasekhar (1981))

Though a detailed study of the periodic horizontal structure is outside the scope of this paper,
some observations seem useful as background material.

By the nature of the ponded-induced flow, there is no preferential direction in the horizontal
(x, y)-plane. Hence it is ’reasonable’ to argue that in the marginal state, the horizontal plane is
divided or tessellated into regular polygons T ⊂ IR2 so that the vertical walls of the cells

ΩA =
{
(x, y, z) : (x, y) ∈ T , z > 0

}
(100)

are surfaces where periodic conditions hold for the concentration, discharge and pressure.

O

T A

α

β

γ

Fig. 12: Regular k-polygon.

What are the possibilities? Suppose T is a regular k-polygon as in Figure 12. Then clearly
α= 2π

k and β=γ= 1
2 (π−

2π
k ) = π

2 (1−
2
k ). Hence the angle at vertex A is given by π(1− 2

k ). Now
suppose that l-polygon vertices meet at A. Then

π(1−
2
k
) =

2π
l

or

1
k
+

1
l
=

1
2

with k, l ∈N .

This implies three possibilities

k = 3, l = 6 regular triangle

k = 4, l = 4 rectangle or square

k = 6, l = 3 regular hexagon

Later we show that a hexagonal pattern contains a periodic pattern of triangles. Hence it suffices
to consider rectangles and hexagons only.

What kind of flow patterns fit in these structures? In the linear approach, having marginal
instabilities, we have for c, u and p the equations (39). We seek solutions of this linear system of
the form

{c, u, p}(x, y, z, t) = {c, u, p}(z, t) f (x, y) , (101)

where f describes the horizontal periodic behaviour. It satisfies
∆⊥ f + a2 f = 0 in T (or IR2) , (102)

f is T -periodic ,
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where a is a given parameter. Using (102) in (39) gives

∂c
∂t

+ Rw
∂C0

∂z
=
∂2c
∂z2 − a2c , (103)

−
∂
∂z

(
1
κ(z)

∂w
∂z

)
+

1
κ(z)

a2w = a2c , (104)

∂w
∂z

= −a2κ(z)p . (105)

Thus p(x, y, z, t)=p(z, t) f (x, y) with

p(z, t) = −
1

a2κ(z)
∂w
∂z

(z, t) . (106)

The horizontal component of the Darcy equation (25b) gives

1
κ(z)

u(x, y, z, t) = −p(z, t)
∂ f
∂x

and

1
κ(z)

v(x, y, z, t) = −p(z, t)
∂ f
∂y

Substituting (106) results in

u(x, y, z, t) = u(z, t)
∂ f
∂x

, with u(z, t)=
1
a2
∂w
∂z

(z, t) , (107)

v(x, y, z, t) = v(z, t)
∂ f
∂y

, with v(z, t)=
1
a2
∂w
∂z

(z, t) . (108)

Thus the periodic boundary conditions for f on ∂T imply that the discharge field u=(u, v, w) is
periodic with respect to T .

What form for f do we choose? We first consider rectangles and next hexagons.

A.1. Rectangular tesselation

Then

T = (−Lx, Lx) ×
(
−Ly, Ly

)
(Lx, Ly>0) .

Now the T -periodic solution of (102) is given by

f (x, y) = cos axx cos ayy ,

where a=
√

a2
x + a2

y and ax=
nπ
Lx

and ay=
mπ
Ly

. Hence for the components of u=(u, v, w) we have

u(x, y, z, t) = − ax
a2
∂w
∂z (z, t) sin axx cos ayy

v(x, y, z, t) = −
ay

a2
∂w
∂z (z, t) cos axx sin ayy

w(x, y, z, t) = w(z, t) cos axx cos ayy


(109)

where w(z, t) is the solution of (39a) and (39b) under the appropriate boundary conditions. An
impression of the flow patterns is shown in Figure 13.
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Fig. 13: Scaled horizontal flow in rectangular periodic cell:
u(x, y, z, t)
−ax
a2

∂w
∂z

= sin axx cos ayy,
v(x, y, z, t)
−ay

a2
∂w
∂z

=

cos axx sin ayy where ax =
π
Lx

and ay =
π
Ly

.

A.2. Hexagonal tesselation

Let T be the regular hexagon of which the sides have length L. An example is sketched in
Figure 14. In this figure we also show the construction of a corresponding regular triangular
cell of which the sides have length

√
3L. Inspection of the resulting discharge field shows that it

suffices to consider the hexagons only.
Problem (102) was originally solved by Christopherson (1940). The solution f is given by

f (x, y) = cos
4π
3L

(1
2

√

3x +
1
2

y
)
+ cos

4π
3L

(1
2

√

3x−
1
2

y
)
+ cos

4π
3L

y , and a =
4π
3L

. (110)

Let us consider the corresponding discharge pattern and the periodicity of the boundary
conditions. We first check the periodicity of f in (110). In polar coordinates (x = r cosϕ,
y= r sinϕ) it reads

f (x, y) = cos
4π
3L

r sin
(
ϕ+

π
3

)
+ cos

4π
3L

r sin
(
ϕ+

2π
3

)
+ cos

4π
3L

r sinϕ .

Hence

f (r,ϕ) = f (r,ϕ+
π
3
) , (111)

i.e. f is π
3 -rotation periodic. Further,

f (x + L∗x, y) = f (x, y) with L∗x =
√

3L

and

f (x, y + L∗y) = f (x, y) with L∗y =
√

3L .

In view of (111) we only need to investigate f in the triangle OMN, see Figure 14. Along the
vertical boundary MN we have

x =
1
2

√

3L , −
1
2

L < y <
1
2

L

and thus

f
∣∣∣
MN = cos

(
π+

2π
3L

y
)
+ cos

(
π−

2π
3L

y
)
+ cos

4π
3L

y

= −2 cos
2π
3L

y + cos
4π
3L

y

= f
∣∣∣
M′N′ . (112)
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v=0, u>0 v=0, u<0
v>0, u=0
v<0, u=0

Fig. 14: Hexagonal cell in the horizontal plane. Note that a tessellation of triangular cells is covered by this case.
Horizontal flow is scaled as in Figure 13.

Note that f
∣∣∣
M′N′ is symmetric with respect to the point K.

To compute the scaled horizontal flow components
u

−ax
a2

∂w
∂z

and
v

−ay

a2
∂w
∂z

we need to determine

∇⊥ f =


∂ f
∂x

∂ f
∂y

 =


−2π
√

3L

{
sin 4π

3L

(
1
2

√
3x + 1

2 y
)
+ sin 4π

3L

(
1
2

√
3x− 1

2 y
)}

−2π
3L

{
sin 4π

3L

(
1
2

√
3x + 1

2 y
)
− sin 4π

3L

(
1
2

√
3x− 1

2 y
)
+ 2 sin 4π

3L y
}
 .

Equivalently one can write

∇⊥ f =


−4π
√

3L
sin 2π

√
3L

x cos 2π
3L y

−4π
3L cos 2π

√
3L

x sin 2π
3L y− sin 4π

3L y

 .

Segment MN: We have

∂ f
∂x

= 0

∂ f
∂y

=
4π
3L

(
sin

2π
3L

y− sin
4π
3L

y
)

=
4π
3L

sin
2π
3L

y
(
1− 2 cos

2π
3L

y
) < 0 on KN
> 0 on MK

.

By the rotation symmetry ∇⊥ f · n=0 on ∂T . Combined with (112) this implies that f satisfies
periodic boundary conditions on ∂T .

42



Segment OK: We have

∂ f
∂x

= −
4π
3L

sin
2π
√

3L
x < 0

∂ f
∂y

= 0

Segment ON: Then y = x/
√

3, n = (−1,
√

3)T (normal direction), t = (
√

3, 1)T (tangential
direction). This implies, with α= 2π

√
3L

x,

∇ f
∣∣∣
ON =


−4π
√

3L
sinα cos 1

3α

−4π
3L

(
cosα sin 1

3α+ sin 2
3α

)
 ,

where 0<α<π. Consequently,

∂ f
∂n

∣∣∣∣∣
ON

= ∇⊥ f · n
∣∣∣
ON =

4π
√

3L

(
sinα cos

1
3
α− cosα sin

1
3
α− sin

2
3
α
)
= 0

and

∂ f
∂t

∣∣∣∣∣
ON

= ∇⊥ f · t
∣∣∣
ON =

−4π
√

3L

(
3 sinα cos

1
3
α+ cosα sin

1
3
α+ sin

2
3
α
)
< 0

since

3 sinα cos
1
3
α+ cosα sin

1
3
α+ sin

2
3
α = 2 sinα cos

1
3
α+ sin

4
3
α+ sin

2
3
α

> sin
4
3
α+ sin

2
3
α = sin

2
3
α
(
2 cos

2
3
α+ 1

)
,

and cos 2
3α>−

1
2 for 0<α<π. Hence the scaled flow field behaves as sketched in Figure 14.

B. Laterally bounded, cylindrical column (Wooding (1959))

Then

Ω = {(r,ϕ) : 0 < r < π, 0 6 ϕ < 2π}

denotes the dimensionless cross-section. The horizontal periodicity is described by the eigenvalue
problem

∆⊥ f + a2 f = 0 in Ω ,

∇⊥ f · n
∣∣∣
r=π = 0 .

As explained in Section 6 of the main text, the smallest positive a for which this problem has a
nontrivial solution corresponds to the most unstable mode.

By separation of variables, see for instance Strauss (2007), one finds the eigenvalues

a = an,m =
βn,m

π
, βn,m is the nth positive zero of J′m ,

for n=1, 2, · · · and m=0, 1, · · · , and the eigenfunctions

fn,m(r,ϕ) = Jm(an,mr) cos mϕ ,
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where Jm is the Bessel function of the first kind and order m.
We are interested in the smallest an,m. By the ordering of the extrema one has

a1,m < a2,m < · · · for m=0, 1, · · · .

Further, see Weisstein, the smallest values a1,m are ordered as

a1,1 < a1,2 < a1,0 < a1,3 < · · · ,

with a1,1=
1.8412
π .

The horizontal flow pattern follows from

u⊥n,m(r,ϕ, z, t) =
1
a2
∂w
∂z

(z, t)∇⊥ fn,m(r,ϕ) ,

where

∇⊥ fn,m =
∂ fn,m

∂r
er +

1
r
∂ fn,m

∂ϕ
eϕ

= an,m J′m(an,mr) cos mϕer −
m
r

Jm(an,mr) sin mϕeϕ .

For the first four eigenvalues, the patterns and level sets of fn,m are sketched in Figure 15. The
ordering of the stability and the flow patterns correspond qualitatively with the experimental
results of Wooding (1959), Figure 1 and Tables 1 and 2.

O O

O O

n=1, m=1 n=1, m=2

n=1, m=0 n=1, m=3

-
-+ +- +

- -+
-
-

+ -
-+- +

Fig. 15: Sketch of flow patterns and level set of f1,m, for m=1, 2, 0, 3.

Since w(r,ϕ, z, t)=w(z, t) f (r,ϕ), one visualizes downward flow in the regions where f >0,
and upward flow when f <0. A rough indication about the ordering of stability is obtained by
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computing the ratio

rn,m =
length
area

∣∣∣∣∣
fn,m>0

.

This gives, see also Figure 15,

r1,1 =
2π
1
2π

3
=

4
π2

r1,2 =
4π
1
2π

3
= 2

4
π2

r1,0 =
2πr0

πr2
0

=
π2

2r0

4
π2 ≈ 2.5

4
π2

r1,3 =
6π
1
2π

3
= 3

4
π2
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-1
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R (σ)1

R (σ)2

R (σ)3

R (σ)4

Fig. 16: Calculated eigenvalues Ri(σ) :=Ri(a, t, σ), a=1.5, t=1, for i=1, 2, 3, 4.

C. Exchange of stabilities

Eigenvalue problem (57) is solved for a fixed wave number a and time t, and for the range
R∈ [1, 20]. The eigenvalue is discretized by means of a Chebyshev–Petrov–Galerkin method, see
Appendix H. The first four eigenvalues are shown in Figure 16. Based on numerical calculations,
it follows that the spectra reveal real eigenvalues only, and that σ≶ 0 for R≶Ri(σ) for at least
i=1, · · · , 4.
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D. Derivation of the Euler–Lagrange equations

We need to find (c, w,π) and values of R where the first variation of (65) vanishes. Let (δ, ε)∈H
and let µ be Ωi-periodic with

∂µ

∂z
= 0 , at z=0, for t>0 , (113a)

µ→ 0 , as z→0, for t>0 . (113b)

Then consider

J(c + δ, w + ε,π+ µ; R) =
∫

Ωi

|∇(c + δ)|2 + R
∫

Ωi

(c + δ)(w + ε)
∂C0

∂z
+

+

∫
Ωi

(π+ µ)
{
∇ ·

( 1
κ
∇(w + ε)

)
− ∆⊥(c + δ)

}
= J(c, w,π; R) + 2

∫
Ωi

∇c · ∇δ+
∫

Ωi

|∇δ|2+

+ R
∫

Ωi

δw
∂C0

∂z
+ R

∫
Ωi

εc
∂C0

∂z
+ R

∫
Ωi

δε
∂C0

∂z
+

+

∫
Ωi

µ
{
∇ ·

( 1
κ
∇w

)
− ∆⊥c

}
+

∫
Ωi

π
{
∇ ·

( 1
κ
∇ε

)
− ∆⊥δ

}
+

∫
Ωi

µ
{
∇ ·

( 1
κ
∇ε

)
− ∆⊥δ

}
.

Terms that are linear in δ, ε, and µ form the first variation of (65) at (c, w,π) and R. Collecting
these terms yields

2
∫

Ωi

∇c · ∇δ+ R
∫

Ωi

δw
∂C0

∂z
−

∫
Ωi

π∆⊥δ = 0 (114a)

R
∫

Ωi

εc
∂C0

∂z
+

∫
Ωi

π∇ ·
( 1
κ
∇ε

)
= 0 (114b)∫

Ωi

µ
{
∇ ·

( 1
κ
∇w

)
− ∆⊥c

}
= 0 (114c)

for arbitrary (δ, ε)∈H and arbitrary Ωi-periodic µ satisfying (113). Integration by parts in (114a)
and (114b) gives ∫

Ωi

{
−2∆c + Rw

∂C0

∂z
− ∆⊥π

}
δ = 0 ,

and ∫
Ωi

{
Rc
∂C0

∂z
+∇ · (

1
κ
∇π)

}
ε+

∫
{z=0}

1
κ
∂π
∂z
ε = 0 .

This implies the Euler–Lagrange equations

−2∆c−Rw
∂C0

∂z
= ∆⊥π (115a)

∇ ·

( 1
κ
∇π

)
= −Rc

∂C0

∂z
(115b)

∇ ·

( 1
κ
∇w

)
= ∆⊥c (115c)

in Ωi, and

∂π
∂z

∣∣∣∣∣
z=0

= 0 (115d)

as natural boundary condition.
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Remark 8 Let (c, w,π, R) be a stationary point of functional (65), i.e. a nontrivial solution of (115)
subject to the appropriate boundary conditions. Multiplying (115a) by c and integrating the result gives

2
∫

Ωi

|∇c|2 + R
∫

Ωi

wc
∂C0

∂z
=

∫
Ωi

c∆⊥π =

∫
Ωi

π∆⊥c . (116)

Next multiply (115c) by π. Integration yields∫
Ωi

π∇
( 1
κ
∇w

)
=

∫
Ωi

w∇ ·
( 1
κ
∇π

)
=

∫
Ωi

π∆⊥c . (117)

In this expression we use (115b) to find∫
Ωi

π∆⊥c = −R
∫

Ωi

cw
∂C0

∂z
.

Substitution into (116) gives the identity∫
Ωi

|∇c|2 + R
∫

Ωi

cw
∂C0

∂z
= 0 . (118)

We conclude that for each stationary point {c, w,π; R} of (65), we have

J(c, w,π; R) = 0 .

E. A lower bound for the energy method

Multiplying the equations in (P∗E) by c, π, and w, respectively, and integrating the results gives

||c′||2 + b2
||c||2 =

R∗

2

∫
∞

0
wce−η

2/4
−

b2

2

∫
∞

0
πc , (119a)

||π′||2 + b2
||π||2 = −R∗

∫
∞

0
cπe−η

2/4 , (119b)

||w′||2 + b2
||w||2 = b2

∫
∞

0
cw , (119c)

where ′ denotes differentiation with respect to η. Thus every non-trivial solution of (P∗E) satisfies

R∗
∫
∞

0
cπe−η

2/4 < 0 and
∫
∞

0
cw > 0 . (120)

Next we multiply (P∗E)2 by w and (P∗E)3 by π. Integration gives∫
∞

0
w′π′ + b2

∫
∞

0
wπ = −R∗

∫
∞

0
wce−η

2/4 (121)

and ∫
∞

0
π′w′ + b2

∫
∞

0
πw = b2

∫
∞

0
πc . (122)

This gives the identity

R∗
∫
∞

0
wce−η

2/4 + b2
∫
∞

0
πc = 0 . (123)
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Using (123) in (119a) gives

||c′||2 + b2
||c||2 = R∗

∫
∞

0
wce−η

2/4 = −b2
∫
∞

0
πc . (124)

Thus in addition to (120), we also have

R∗
∫
∞

0
wce−η

2/4 > 0 and
∫
∞

0
πc < 0 . (125)

From (119c) we deduce

||w||2 <
∫
∞

0
cw 6 ||c||||w|| ,

or

||w|| 6 ||c|| . (126)

From (124) we deduce

||c||2 < −
∫
∞

0
πc 6 ||π||||c|| .

Thus any solution of (P∗E) satisfies

||w|| < ||c|| < ||π|| . (127)

Then (119b) and (127) imply

R∗ = 0 ⇒ π = c = w = 0 .

i.e. R∗ is not in the spectrum.

Remark 9 If the eigenfunction c>0 in R+, one has (from (P∗E)3) w>0 in R+ and (from (P∗E)2) π<0 in
R+. Then (120) and (125) implies R∗>0.

Identity (124) combined with inequality (126) gives

b2
||c||2 6 R∗

∫
∞

0
wce−η

2/4

6 |R∗|
∫
∞

0
|wc| 6 |R∗|||w||||c||

< |R∗|||c||2 .

Thus |R∗|>b2, implying

|RE(a, t)| >
√
π
t

a2t = a2
√
πt . (128)

Assuming RE>0, inequality (128) yields stability for any wave number a>0 and t sufficiently
large.
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F. Solution by Green’s kernels

We assume κ(z)=1. Let G1(η; s) be the solution of
−

d2G1

dη
+ b2G1 = δ(η− s) , η > 0, s > 0 ,

dG1

dη
(0) = 0 , G1 → 0 as η→∞ ,

and let G2(η; s) be the solution of
−

d2G2

dη2 + b2G2 = δ(η− s) , η > 0, s > 0 ,

G2(0) = 0 , G2 → 0 as η→∞ ,

Then G1 and G2(η; s) are given by respectively

G1(η; s) =


−1
2b

(
eb(η−s) + e−b(η+s)

)
for η < s ,

−1
2b

(
eb(s−η) + e−b(s+η)

)
for η > s .

and

G2(η; s) =


−1
2b

(
eb(η−s)

− e−b(η+s)
)

for η < s ,

−1
2b

(
eb(s−η)

− e−b(s+η)
)

for η > s .

Using these Green’s functions we have from (P∗L)2 and (P∗E)2

w(η) = b2
∫
∞

0
G1(η; s)c(s) ds ,

and from (P∗E)3

π(η) = −R∗
∫
∞

0
G1(η; s)e−s2/4c(s) ds .

Then (P∗L) can be rewritten as

c(η) = R∗b2
∫
∞

0
G2(η; u)

{∫
∞

0
G1(u; s)c(s) ds

}
e−u2/4 du

= R∗b2
∫
∞

0

{∫
∞

0
G2(η; u)G1(u, s)e−u2/4 du

}
c(s) ds ,

or

c(η) = λL

∫
∞

0
KL(η, s)c(s) ds , (129)

with λL=R∗b and KL(η; s)=
∫
∞

0 G2(η; u)G1(u; s)e−u2/4 du.
Similarly, (P∗E) can be written as

c(η) = λE

∫
∞

0
KE(η, s)c(s) ds , (130)
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where λE=
R∗b2

2 and KE(η; s)=
∫
∞

0 G2(η; u)G1(u; s)
{
e−u2/4 + e−s2/4

}
du.

In an abstract way, equations (129) and (130) are written as

c = λLKLc and c = λEKEc , (131)

where KL and KE denote the integral operators defined in (129) and (130).
Let Q = {(η, t) : η > 0, t > 0} and R+ = (0,∞). We have the following properties of the

integral operators:

(P1) Ki>0 in Q for i = L, E. This is a direct consequence of G1,G2 > 0.
(P2) Ki are non-symmetric, i.e. Ki(η, t) , Ki(t, η) for i = L, E. Although the Green’s functions

G1 and G2 themselves are symmetric, they are different due to the different boundary
conditions: c(0)=0 and w′(0)=π′(0)=0. Consequently, G2(η; s)G1(s; t) , G2(t; s)G1(s; η).
If w and π would satisfy the Dirichlet conditions w(0) =π(0) = 0, then G1 = G2 and the
kernels would be symmetric.

(P3) ||Ki||Lp(Q) <∞ for i = L, E and for all 1 6 p 6∞. See Appendix for proof. In particular,
||Ki||L2(Q)<∞ for i = L, E. This means (see Renardy and Rogers (2004)) that both kernels are
of Hilbert–Schmidt type and that KL and KE are compact operators from L2(R+) to L2(R+).

(P4) KE(η, t)=KL(η, t) + ∆(η, t), where ∆(η, t)= e−t2/4
∫
∞

0 G2(η, s)G1(s, t) ds. Since ∆> 0 in Q,
we have KE>KL in Q. Together with (P1) this implies ||KE||L2(Q)> ||KL||L2(Q).

(P5) Combining (131) and (P3) we have ||c||2
L2(R+)

=λi(Kic, c)L2(R+) for i=L, E. This means that

1
λi,min

= sup
||c||L2(R+)

=1
(Kic, c)L2(R+) .

Since (Kic, c)L2(R+)=
∫

Q Ki(η, t)c(t)c(η) dt dη, we estimate with Schwartz

(Kic, c)L2(R+) 6

(∫
Q

K2
i

)1/2 (∫
Q

c2(t)c2(η) dη dt
)1/2

,

or

(Kic, c)L2(R+) 6 ||Ki||L2(Q)||c||
2
L2(R+)

.

Thus

1
λi,min

6 ||Ki||L2(Q) .

G. Lp-boundedness of Ki for i = L, E

We will show that Ki ∈ Lp(Q) for all 16p6∞ (with i=E, L). Starting point is the expression

KE(η, t) =
∫
∞

0
G2(η; s)G1(s; t)

{
e−s2/4 + e−t2/4

}
ds . (132)

Using the explicit expressions for G1 and G2 we construct bounds for (note that KE>0 in Q)

||KE||∞ = sup
(η,t)∈Q

KE(η, t) , (133)

and

||KE||1 =

∫
Q

KE(η, t) dη dt . (134)

50



These bounds depend on the parameter b. From (133) and (134) it follows that

||KE||p =

(∫
Q

Kp
E

)1/p

=

(∫
Q

Kp−1
E KE

)1/p

6 ||KE||
(p−1)/p
∞ ||KE||

1/p
1

for 1<p<∞.
Since G2(η; s) and G1(s; t) change with η≶s and s≶ t, we need to do some bookkeeping. We

consider separately

KE(η; t) =

K+
E (η, t) in Q+ := {t > η}

K−E (η, t) in Q− := {t < η}

In the integral (132) we consider three intervals

0 < s < η , η < s < t , and s > t when (η, t) ∈ Q+ ,

0 < s < t , t < s < η , and s > η when (η, t) ∈ Q− .

In Q+ this gives

KE(η, t) = K+
E (η, t) =

∫ η

0
· · ·+

∫ t

η
· · ·+

∫
∞

t
· · ·

=: I+1 (η, t) + I+2 (η, t) + I+3 (η, t) . (135)

Likewise, in Q−

KE(η, t) = K−E (η, t) =
∫ t

0
· · ·+

∫ η

t
· · ·+

∫
∞

η
· · ·

=: I−1 (η, t) + I−2 (η, t) + I−3 (η, t) . (136)

We construct || · ||∞ and || · ||1 bounds for I±i in Q± (i=1, 2, 3).
In the estimates below we use (trivially)

e−t2/4 < e−s2/4 when t>s
e−s2/4 < e−t2/4 when s> t

 (137)

We first estimate in Q+ (i.e. 0< η< t<∞). Then the product of the Green’s functions can be
written as

G2(η; s)G1(s; t) =
1

4b2



e−b(η+t)
(
e2bs
− e−2bs

)
s < η < t (138a)(

eb(η−t)
− e−b(η+t)

) (
1 + e−2bs

)
η < s < t (138b)(

ebη
− e−bη

) (
ebt + e−bt

)
e−2bs η < t < s (138c)

Estimates for I+1 : Using (138a) in (132) we estimate∫ η

0

(
e2bs
− e−2bs

) (
e−s2/4 + e−t2/4

)
ds < 2

∫ η

0
e2bs−s2/4 ds = 2e4b2

∫ η

0
e−(s−4b)2/4 ds < 4

√
πe4b2

.

Hence

I+1 (η, t) <
√
π

b2 e4b2
e−b(η+t) ,

implying

||I+1 ||L∞(Q+) 6

√
π

b2 e4b2
and ||I+1 ||L1(Q+) 6

√
π

2b4
e4b2

. (139)
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Estimates for I+2 : Using (138b) in (132) we estimate∫ t

η

(
1 + e−2bs

) (
e−s2/4 + e−t2/4

)
ds < 4

∫ t

η
e−s2/4 ds .

Hence

I+2 (η, t) <
1
b2 eb(η−t)

∫ t

η
e−s2/4 ds ,

implying

||I+2 ||L∞(Q+) <

√
π

b2 , (140)

and, using ∫ t

0
I+2 (η, t) dη <

1
b3 eb(η−t)

∫ t

η
e−s2/4 ds

∣∣∣∣∣∣t
0

+
1
b3

∫ t

0
eb(η−t)−η2/4 dη

=
1
b3 e−bt

{∫ t

0
ebη−η2/4 dη−

∫ t

0
e−s2/4 ds

}
<

1
b3 e−bteb2

∫ t

0
e−(η−2b)2/4 dη

<
2
√
π

b3 eb2
e−bt ,

||I+2 ||L1(Q+) <
2
√
π

b4
eb2

. (141)

Estimates for I+3 : Using (138c) in (132) we estimate∫
∞

t
e−2bs

(
e−s2/4 + e−t2/4

)
ds < 2e−t2/4

∫
∞

t
e−2bs ds =

1
b

e−t2/4−2bt .

Hence

I+3 (η, t) <
1

4b3 e−t2/4
(
e−bt + e−3bt

) (
ebη
− e−bη

)
,

implying (since η< t)

||I+3 ||L∞(Q+) 6
1

2b3 , (142)

and, using (
e−bt + e−3bt

) ∫ t

0

(
ebη
− e−bη

)
dη =

1
b

(
e−bt + e−3bt

) (
ebt + e−bt

− 2
)

1
b

(
1 + e−2bt

) (
1− e−bt

)2
<

2
b

,

||I+3 ||L1(Q+) 6

√
π

2b4
. (143)

Next we estimate in Q− (0< t<η<∞). Then we have

G2(η; s)G1(s; t) =
1

4b2



e−b(η+t)
(
e2bs
− e−2bs

)
s < t < η (144a)(

eb(t−η)
− e−b(η+t)

) (
1− e−2bs

)
t < s < η (144b)(

ebη
− e−bη

) (
ebt + e−bt

)
e−2bs t < η < ∞ (144c)
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Estimates for I−1 : Using (144a) in (132) we estimate∫ t

0

(
e2bs
− e−2bs

) (
e−s2/4 + e−t2/4

)
ds < 4

√
πe4b2

.

Hence

I−1 (η, t) <
√
π

b2 e4b2
e−b(η+t) .

Consequently

||I−1 ||L∞(Q−) <
√
π

b2 e4b2
and ||I−1 ||L1(Q−) <

√
π

2b4
e4b2

(145)

Estimates for I−2 : Using (144b) in (132) we estimate∫ η

t

(
1− e−2bs

) (
e−s2/4 + e−t2/4

)
ds < 2(η− t)e−t2/4 .

Thus

I−2 (η, t) <
1

2b2

(
eb(t−η)

− e−b(t+η)
)
(η− t)e−t2/4 ,

implying

||I−2 ||L∞(Q−) <
1

2eb3 , (146)

and, using ∫
∞

t
I−2 (η, t) dη <

1
2b2

∫
∞

t
(η− t)e−b(η−t)−t2/4 dη

=
1

2b2

∫
∞

0
ζe−bζ dζe−t2/4 =

1
4b4

e−t2/4 ,

||I−2 ||L1(Q−) <

√
π

2b4
. (147)

Estimates for I−3 : Using (144c) in (132) we estimate∫
∞

η
e−2bs

(
e−s2/4 + e−t2/4

)
ds < 2e−t2/4

∫
∞

η
e−2bs ds =

1
b

e−t2/4−2bη .

Hence

I−3 (η, t) <
1

4b3

(
ebη
− e−bη

) (
ebt + e−bt

)
e−t2/4−2bη

=
eb(η+t)

4b3

(
1− e−2bη

) (
1 + e−2bt

)
e−t2/4−2bη <

1
2b3 ebt−t2/4−bη .

Consequently

||I−3 ||L∞(Q−) <
1

2b3 and ||I−3 ||L1(Q−) <

√
π

b4
eb2

. (148)
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Finally we combine (135)–(148) to find

||K+
E ||L∞(Q+) 6

√
π

b2 e4b2
+

√
π

b2 +
1

2b3 ,

||K−E ||L∞(Q−) 6
√
π

b2 e4b2
+

1
2eb3 +

1
2b3 ,

implying

||KE||L∞(Q) 6

√
π

b2 e4b2
+

1
2b3 +

max{
√
π, 1

2eb }

b2 , (149)

and

||KE||L1(Q) 6

√
π

b4
e4b2

+
3
√
π

b4
eb2

+

√
π

b4
. (150)

This means that

||KE||L2(Q) 6
√
||KE||L∞(Q) · ||KE||L1(Q) 6 F(b) ,

where F(b) is the square root of the product of the right sides in (149) and (150).

Remark 10 Replacing in KE the exponential functions e−s2/4 and e−t2/4 by a constant, yields an
unbounded L1 (or L2) norm. Then the corresponding integral operator is unbounded.

Remark 11 In all estimates we used (137). As a consequence the same result holds for the kernel KL(η, t).
The only difference with the estimates above is a factor 1

2 . This is then compensated by the difference in the
definitions of λE and λL.

H. Chebyshev–Petrov–Galerkin spectral method

H.1. Linearised perturbation equations

The linearised perturbation equations (43) are solved by means of a Chebyshev–Petrov–Galerkin
spectral method, see Shen et al. (2011). Spectral methods deal with weighted residual problems.
We first introduce two linear operators:

L′ := α
∂2

∂ζ2 − a2 , L := −α
∂
∂ζ

(
1

κ̂(ζ)

∂
∂ζ

)
+

a2

κ̂(ζ)
.

The ˆ-notation and parameter α=4/d2 stem from the trivial linear coordinate transformation
which maps the interval (0, d) to I :=(−1, 1).

Starting point of the weighted residual method is to approximate the solution c and w of (43)
by a finite sum

c(z, t) = ĉ(ζ, t) ≈ ĉN(ζ, t) =
N∑

i=0

ci(t)φi(ζ) ,

w(z, t) = ŵ(ζ, t) ≈ ŵN(ζ, t) =
N∑

i=0

wi(t)ϕi(ζ) ,
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where {φi} and {ϕi} are the trial (or shape) functions. The coefficients {ci(t)} and {wi(t)} are to be
determined by solving the following problem:

(CPG-I)



Find {ci(t)} and {wi(t)} for t > 0 such that:

∫
I


[
L′ −

∂
∂t

] N∑
i=0

ci(t)φi −R
√
α
∂Ĉ0

∂ζ

N∑
i=0

wi(t)ϕi

ψ jω = 0 , 06 j6N ,

∫
I

L
N∑

i=0

wi(t)ϕi − a2
N∑

i=0

ci(t)φi

ψ jω = 0 , 06 j6N ,

∫
I

 N∑
i=0

ci(0)φi − ĉ(·, 0)

ψ jω = 0 , 06 j6N .

Here {ψ j} are the test functions, and ω a positive weight function.
In our approach we define the shape functions by (Heinrichs, 1989, 1991; Shen et al., 2011)

φi(ζ) = (1− ζ2)Ti(ζ) ,

ϕi(ζ) = Ti(ζ) + aiTi+1(ζ) + biTi+2(ζ) ,

and the test functions by (Gottlieb and Orszag, 1977; Shen, 1995)

ψ j(ζ) = T j(ζ) − T j+2(ζ) .

The coefficients {ai} and {bi} are chosen in such a way that the shape function for ŵN satisfies
the Neumann boundary condition ∂ŵN

∂z (−1, ·)=0 (z=0) and the Dirichlet condition ŵN(1, ·)=0
(z=H):

ai =
4i + 4

−2i2 − 6i− 5
, and bi =

2i2 + 2i + 1
−2i2 − 6i− 5

.

The shape function for ĉN satisfies the Dirichlet conditions ĉN(−1, ·)= ĉN(1, ·)=0.
Since both the shape and test functions are build up from Chebyshev polynomials, we will

use for the weighting function ω

ω(ζ) =
1√

1− ζ2

as to exploit as much as possible the orthogonality property.
We define the following matrices:

Ai, j := α

∫
I

d2φi

dζ2 ψ jω , Ii, j :=
∫

I
φiψ jω , Ji, j :=

∫
I

1
κ̂(ζ)

ϕiψ jω ,

Ki, j := α

∫
I

d
dζ

(
1

κ̂(ζ)

dϕi

dζ

)
ψ jω = −α

∫
I

1
κ̂(ζ)

dϕi

dζ

dψ j

dζ
ω− α

∫
I

1
κ̂(ζ)

ζ

1− ζ2

dϕi

dζ
ψ jω ,

Pi, j(t) :=
√
α

∫
I

∂Ĉ0

∂ζ
(·, t)ϕiψ jω ,

f j :=
∫

I
ĉ(·, 0)ψ jω .

In this formulation we allow for non-differentiable, but non-zero κ̂.
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The Chebyshev–Gauss quadrature (Quarteroni et al., 2000) is an extension of Gaussian
quadrature method for approximating the value of integrals of the following kind:∫

I
fω =

∫
I

f (ζ)√
1− ζ2

dζ .

Its value can be approximated by∫
I

f (ζ)√
1− ζ2

dζ ≈
π
M

M∑
i=1

f
(
cos

(2i− 1
2M

π
))

.

Let c = (c0(t), c1(t), · · · , cN(t))T and w = (w0(t), w1(t), · · · , wN(t))T. Then problem (CPG-I)
can be written in matrix-vector notation:

Find c(t) and w(t) for t > 0 such that:[
A− a2I

]
c− I

dc
dt
−RP(t)w = 0 ,[

−K + a2J
]

w− a2Ic = 0 ,

Ic(0) − f = 0 .

To analyse linear stability, we assume dc
dt =σc and solve the problem:

For a given t > 0, find c(t) and w(t) such that:[
A− a2I

]
c−RP(t)w = σIc ,[

−K + a2J
]

w− a2Ic = 0 .

H.2. The Euler–Lagrange equations from the energy method

By the nature of the (implied) boundary conditions for π, we approximate its solution by

π(z, t) = π̂(ζ, t) ≈ π̂N(ζ, t) =
N∑

i=0

πi(t)ϕi(ζ) .

The argument t has to be considered here as a given and fixed time parameter. Proceeding as in
the previous subsection, we want to solve the following problem:

(CPG-II)



For a given t > 0, find {ci(t)}, {wi(t)}, and {πi(t)} such that:

∫
I

L′
N∑

i=0

ci(t)φi −
1
2

R
√
α
∂Ĉ0

∂ζ

N∑
i=0

wi(t)ϕi −
1
2

a2
N∑

i=0

πi(t)ϕi

ψ jω = 0 , 06 j6N ,

∫
I

L
N∑

i=0

πi(t)ϕi + R
√
α
∂Ĉ0

∂ζ

N∑
i=0

ci(t)φi

ψ jω = 0 , 06 j6N ,

∫
I

L
N∑

i=0

wi(t)ϕi + a2
N∑

i=0

ci(t)φi

ψ jω = 0 , 06 j6N ,
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We define the matrices

Hi, j :=
∫

I
ϕiψ jω and Qi, j(t) :=

√
α

∫
I

∂Ĉ0

∂ζ
(·, t)φiψ jω .

Let π = (π0(t),π1(t), · · · ,πN(t))T. Then problem (CPG-II) can be written in matrix-vector
notation: 

For a given t > 0, find c(t), w(t), and π(t) such that:

[
A− a2I

]
c−

1
2

a2Hπ−
1
2

RP(t)w = 0 ,[
−K + a2J

]
π−RQ(t)c = 0 ,[

−K + a2J
]

w− a2Ic = 0 .

I. Characteristic–Galerkin finite element method

The solution of (77–78) is approximated by means of a characteristic–Galerkin finite element
approach (Pironneau (1982); Pironneau et al. (1992); Xikui and Wenhua (1999)). Key feature of
this approach is the treatment of the convective terms, which might become dominant compared
to the diffusive term for the case of non-steady convective flows. Convective dominance might
give rise to numerical instabilities during time-integrations.

As with any Galerkin method, the formulation starts with a weak formulation. Let:

H1
per :=

{
v ∈ H1(Ω̂) : v|Γ2 = v|Γ4 ,

∂v
∂x

∣∣∣∣∣
Γ2

=
∂v
∂x

∣∣∣∣∣
Γ4

}
,

H1
0,per :=

{
v ∈ H1

per(Ω̂) : v|Γ1 = v|Γ3 = 0
}

,

V0,per :=
{
v ∈ H1

per(Ω̂) : v|Γ1 = 0
}

,

V1,per :=
{
v ∈ V0,per(Ω̂) : v|Γ3 = 1

}
.

We want to solve the following variational problem in domain Ω̂ and for t ∈ (0, T], T>0:

(FEP)



Find C in L2(0, T; V1,per(Ω̂)), ∂tC in L2(0, T; H−1
1,per(Ω̂))

and Ψ in V0,per(Ω̂) such that∫
Ω̂

1
κ(z)
∇Ψ · ∇w +

∫
Ω̂

∂C
∂x

w = 0 ∀w ∈ H1
0,per(Ω̂) ,

∫
Ω̂

∂C
∂t

v + R
∫

Ω̂

(
−
∂Ψ
∂z

∂C
∂x

+
∂Ψ
∂x

∂C
∂z

)
v +

∫
Ω̂
∇C · ∇v = 0 ∀v ∈ H1

0,per(Ω̂) .

Let Ψ be given for some time t, and let X(t) : (0, T]→ R2 be the characteristic curve given by

dX(t)
dt

= u(X(t), t) , X(0) = X0 ,

and where we assume u=(−R∂Ψ
∂z , R∂Ψ

∂x ). Then

d
dt

C(X(t), t) = ∇C(X(t), t) ·
dX(t)

dt
+
∂C(X(t), t)

∂t

= ∇C(X(t), t) · u(X(t), t) +
∂C(X(t), t)

∂t
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Along the characteristic, the material derivative in the weak formulation can hence be written as:∫
Ω̂

∂C
∂t

v + R
∫

Ω̂

(
−
∂Ψ
∂z

∂C
∂x

+
∂Ψ
∂x

∂C
∂z

)
v =

∫
Ω̂

dC(X(t), t)
dt

v

≈

∫
Ω̂

S(X(t), t) −C(X(t− τ), t− τ)
τ

v ,

≈

∫
Ω̂

S(X(t), t) −C(X(t) − uτ, t− τ)
τ

v .

We define tn= tn+1
− τ, tn< tn+1, and Cn=C(·, tn). Then we have∫

Ω̂

∂C
∂t

v + R
∫

Ω̂

(
−
∂Ψ
∂z

∂C
∂x

+
∂Ψ
∂x

∂C
∂z

)
v ≈

∫
Ω̂

Cn+1
− C̄n

τ
v ,

where C̄n denotes the interpolated solution of Sn at X(tn+1) − uτ.
We approximate the space of admissible functions v by Vh= {e ∈ H1(Ω̂) : ∀K ∈ Th, e|K ∈ P2},

where P2 denotes the space of polynomials on IR2 of degree ≤ 2. Similarly, for w we have
Wh= {e ∈ H1(Ω̂) : ∀K ∈ Th, e|K ∈ P2}. By using the θ-scheme, we arrive at the following problem:

(FEP)h



Find Cn+1
h ∈ Vh and Ψh ∈Wh such that for all

vh ∈ Vh and wh ∈Wh we have:∫
Ω̂

1
κ(z)
∇Ψh · ∇wh +

∫
Ω̂

∂Cn
h

∂x
wh = 0 ,∫

Ω̂

Cn+1
h − C̄n

h
τ

vh + θ

∫
Ω̂
∇Cn+1

h · ∇vh + (1− θ)
∫

Ω̂
∇Cn

h · ∇vh = 0 .

Above scheme has been implemented in freefem++ (Hecht, 2012).
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