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� A model is developed for water diffusion in a swelling particle with a free boundary.
� A kinetic law is introduced to describe water uptake along the particle surface.
� The model is simplified for swelling of spherical particles.
� Diffusivity and water uptake at the particle surface govern the swelling kinetics.
� The model agrees well with experimental data from literature.
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In this work, a model is developed for describing the swelling of an individual particle, made of Super
Absorbent Polymers (SAP). Governing equations for the water uptake at the particle surface, diffusion
of water into the particle and the subsequent swelling of the particle are developed for an irregularly
shaped particle. The modelling domain is assumed to have a free and moving boundary, thus a moving
particle surface, to account for the increase in particle size. In addition, the entrance of water through
the particle surface is modelled as a first-order kinetic process. The proposed model is then simplified
for a spherical particle, made dimensionless, projected onto a fixed grid, and solved using an explicit
numerical scheme. A dimensionless number is defined as the ratio of kinetics of water uptake at the par-
ticle surface to the water diffusivity. Using this dimensionless number, three regimes of swelling kinetics
can be identified: (i) diffusion is limiting, (ii) water uptake is limiting, or (iii) both processes are limiting.
Numerical results indicate that experimental data from literature can be reproduced when assuming
water uptake kinetics at the particle surface to be very fast; i.e. instantaneous, thus diffusion being the
controlling mechanism. Of course, for SAP particles having a different composition, the particle surface
may slow down the swelling kinetics. Our model is compared to three other models found in the litera-
ture. They all give a similar result but with different diffusive coefficients.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Super Absorbent Polymers (SAPs) are used in a variety of appli-
cations, for example: (i) to absorb fluids in hygienic products
(Buchholz and Graham, 1998); (ii) to control shrinkage in cement
pastes (e.g. Snoeck et al., 2015); iii) to regulate moisture content
in soils (e.g. Woodhouse and Johnson, 1991); (iii) to remove water
from a pathogen suspension in order to increase the pathogen con-
centration to a detection limit (Xie et al., 2016). SAPs are hydrophi-
lic polymers that are lightly cross-linked and some SAPs have been
reported to absorb demineralized water up to 1000 times their ini-
tial weight and saline water up to 30 times (Zohuriaan-Mehr and
Kabiri, 2008). When SAP particles form a bed, not only the particle
properties but also the properties of the bed become important for
the performance of the SAP particles and their corresponding swel-
ling behaviour.

To investigate the behaviour of a bed of swelling SAP particles, a
macro-scale model can be employed; see for example Diersch et al.
(2010). Macro-scale models require relations to describe the
dynamics of swelling. They are typically parameterized using
experiments and thus are not always physically based. Another
method is to employ a grain-scale model, such as the Discrete Ele-
ment Method, DEM (Sweijen et al., 2017). DEM is a particle model
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that can describe the movement of individual particles inside a
packing of spheres during deformation and/or swelling. For DEM
simulations of swelling SAP particles, an expression is needed to
describe the swelling rate of individual particles as a function of
the particle size, which evolves with time. There exist
empirically-based expressions that are obtained from fitting exper-
imental data of swelling particles (see e.g. Omidian et al., 1998;
Esteves, 2011; Kabiri et al., 2003). For DEM simulations, a simple
expression is preferable as it reduces the numerical computations.
But, one would be interested to know whether such an expression
can be linked to a physically-based relation for the degree of swel-
ling evolving over time. For this purpose, a rigorous fully-coupled
model of fluid diffusion into a swelling particle (including its defor-
mation) is needed (see e.g. Huyghe and Janssen, 1997).

Water transport in a swelling grain has previously been studied
by Radu et al. (2002), who studied drug release from a one-
dimensional swelling polymer. They modelled non-linear diffusion
(Fujita-type diffusion) inside a particle having a free boundary at
the surface of the particle as well as an internal boundary inside
the polymer, which mimics the transition from dry polymer to
hydrated polymer. The problem of transport in a domain that has
a free boundary is a well-studied problem, where the free bound-
ary is often referred to as a Stefan type boundary condition. Exam-
ples are the work by Van Noorden and Pop (2007), who have
developed a model of cations and ions diffusion in a domain that
has a free boundary, to study dissolution and precipitation of crys-
tal. Van De Fliert and Van Der Hout (2000) developed a mathemat-
ical model for drying of paints, where pigments and resins are
conserved but solvents can evaporate over a moving boundary,
thus making it a diffusive and evaporation problem. Weiqing
(1990) studied solidification due to superheating (or cooling) in
which thermal diffusivity is coupled to a free boundary.

While a variety of complex models exist to describe the swel-
ling of one particle, relatively simple empirical equations remain
convenient for fitting experimental data. To test these empirical
equations, we compare existing (semi-) empirical equations to a
newly developed physically-based model, which accounts for lin-
ear diffusion of water into a swelling particle, with a free boundary.
In addition, water uptake at the particle’s surface is assumed to be
a kinetic process in itself, which in combination with water diffu-
sion governs the swelling rate of a particle. First, a set of equations
for an arbitrary shaped particle is derived, assuming a constant
polymer volume (i.e. no mixing occurs). Then, the equations are
simplified for the swelling of a spherical particle and are solved
numerically. Model results are compared to (semi-) empirically
equations and experimental data on swelling of spherical particles
from Esteves (2011). Finally, the effect of coating of particles is
evaluated in terms of kinetics in water uptake along the particle’s
surface.

2. A numerical model of swelling of a particle

Here, a set of equations is derived to describe diffusion of water
into a swelling particle that is submerged into sufficient water. We
assume that the polymer and water are both incompressible. We
start by describing the swelling of an arbitrary shaped particle.
Then, a parameter is introduced to capture the uptake rate of water
along the particle surface. Finally, equations are applied to a spher-
ical particle.

2.1. Swelling of an irregular particle

Consider a particle that has an arbitrary initial shape filling a
domain indicated by Xð0Þ. At time t > 0, the domain is given by
XðtÞ. At each point �x 2 XðtÞ, the local volume fraction of water is
denoted by hð�x; tÞ. A constrain is applied to hð�x; tÞ using
h0 6 hð�x; tÞ 6 hmax, where hmax and h0 are the maximum and initial
value of h, respectively, which are both constant over time and
space. Per definition, hmax is smaller than unity, because unity
would indicate that there is no solid present. The boundary of
the domain is denoted by @XðtÞ at which h ¼ hb, thus hb is the value
of h at the boundary. The boundary has an outward normal �n and a
velocity �v . Diffusion into a particle is described by the following set
of equations:

@h
@t þ div�q ¼ 0
�q ¼ �Drh

�
for �x 2 X and t > 0 ð1aÞ

hj@XðtÞ ¼ hb for t > 0 ð1bÞ

hjt¼0 ¼ h0 ð1cÞ
where �q denotes the water flux and D is a diffusion coefficient
which we assume to be a material constant and thus to be indepen-
dent of time and location. Note that in this work, diffusion is
assumed to be linear for sake of simplification (i.e. D is a constant),
but water diffusion into a dry particle can be non-linear diffusion
such that D woud be a function of h.

For a swelling particle, an equation for the moving boundary
@XðtÞ is required that considers water that enters the growing par-
ticle via its boundary. Let us consider a small surface element of
@XðtÞ, with an area A, that moves in space from time t to time
t þ Dt. The particle grows into water, within which h ¼ 1. This
results in an excess volume of water (Vexcess) inside the particle,
near the boundary, that has to diffuse into the particle. This volume
is given by

Vexcess ¼ ð1� hbÞð�v � �nÞADt ð2Þ
This volume of water diffuses into the particle, for which we can

write:

Vexcess ¼ �D ��n � rhj@XðtÞ
h i

ADt ¼ Dðrh � �nÞADt ð3Þ

Combining Eqs. (2) and (3) yields the volume balance:

Dðrhj@XðtÞ � �nÞ ¼ ð1� hbÞð�v � �nÞ ð4Þ
which relates the water flux at the boundary to the speed of the
boundary. Eq. (4) ensures volume conservation across a moving
boundary. It has been employed by Fasano and Mikelic (2002) to
account for the effect of water absorption by a spherical particle
on unsaturated flow of water surrounding that particle. Eqs. (1)
and (4) yield a complete set of equations that can be solved for
water diffusion in an arbitrary domain and its subsequent swelling.
It is a classical one-phase free boundary problem for which numer-
ous literature is available, see for example Crank (1984).

2.2. Rate of water uptake at the particle surface

The uptake of water molecules at the surface can be a kinetic
process in itself. If the uptake is very fast or instantaneous, the
value of hb is given by a constant value of hmax which corresponds
to the maximum absorption capacity of a hydrogel. If the uptake
evolves in time, hb depends on time. Assuming that this behaves
as first-order kinetics, one has:

@hb
@t

¼ kðhmax � hbÞ: ð5Þ

in which k [T�1] is a kinetic constant. Similar forms of Eq. (5) have
been employed to describe the swelling of hydrogels (see e.g.
Buchholz, 1998), but we employ it here as a kinetic law for water
uptake at the particle’s surface. Integration of Eq. (5) yields:
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hb ¼ hmax � ðhmax � h0Þe�kt: ð6Þ
Eq. (6) is valid provided that the initial and boundary conditions

are compatible such that hb ¼ h0 at @X for t ¼ 0.

2.3. Swelling of a spherical particle

Eqs. (1) and (4) can be simplified to describe the swelling of a
sphere with initial radius R0 > 0. Let R ¼ RðtÞ being the radius at
time t > 0. Assuming radial symmetry, Eq. (1a) is rewritten in
terms of radial coordinates:

@hðr; tÞ
@t

¼ D
r2

@

@r
r2

@hðr; tÞ
@r

� �
for 0 < r < RðtÞ and t > 0 ð7Þ

Eq. (4) can be rewritten for radial coordinates by realizing that
ð�v � �nÞ ¼ dR

dt and rhj@XðtÞ � �n ¼ @h
@r

��
R, so that we obtain:

D
@h
@r

����
R

¼ ð1� hbÞ dRdt ð8Þ

Eq. (8) complies with a volume balance of a swelling spherical
particle, on which we elaborate in Appendix A. We introduce a dif-

fusive reference time tr ¼ R20
D . Then, Eqs. (6)–(8) are made dimen-

sionless using the following parameters:

T ¼ t
tr

ð9aÞ

r� ¼ r
R0

ð9bÞ

R�ðTÞ ¼ RðtÞ
R0

ð9cÞ

This leads to the set of equations:

@h
@T

¼ 1
r�2

@

@r�
r�2

@h
@r�

� �
for 0 < r� < R�ðTÞ and T > 0 ð10aÞ

@h
@r�

����
R�

¼ ð1� hðR�; TÞÞ dR
�

dT
for T > 0 ð10bÞ

hjr�¼R�ðtÞ ¼ hmax � ðhmax � h0Þe�KT ð10dÞ
where:

K ¼ R2
0k
D

ð10eÞ

Note that K is the only dimensionless group in this problem. It

represents the ratio of characteristic time scales of diffusion R20
D

� �
over that of water uptake 1

k

� 	
.

2.4. Spatial transformation

Eqs. (10) form a moving boundary problem as R� changes with
time. To simplify the numerical implementation of Eqs. (10), we
transform them to an equivalent problem on a fixed domain, by
defining a new spatial variable (Caldwell and Kwan, 2004;
Kutluay et al., 1997)

X ¼ r�

R�ðTÞ ¼
r

RðtÞ where 0 6 X 6 1: ð11Þ

By writing uðX; TÞ ¼ u r�
R�ðTÞ ; T
� �

� hðr�; TÞ, we can use the chain

rule of differentiation to obtain the following relationships:

@h
@r�

¼ @u
@r�

¼ 1
R�ðTÞ

@u
@X

ð12Þ
@h
@T

¼ @u
@T

þ @u
@X

@X
@T

¼ @u
@T

� r�

½R�ðTÞ�2
dR�ðTÞ
dT

@u
@X

: ð13Þ

Using expressions 12 and 13 in Eq. (10a) gives:

@u
@T

� r�

½R�ðTÞ�2
dR�ðTÞ
dT

@u
@X

¼ 1

X2½R�ðTÞ�2
1

R�ðTÞ

� @

@X
X2½R�ðTÞ�2 1

R�ðTÞ
@u
@X

� �
: ð14Þ

Multiplying this equation by ½R�ðTÞ�2 and using Eq. (11) results
in

½R�ðTÞ�2 @u
@T

¼ 1
X2

@

@X
X2 @u

@X

� �
þ XR�ðTÞdR

�ðTÞ
dT

@u
@X

: ð15Þ

Finally, we introduce variable ZðTÞ ¼ 1
2 ½R�ðTÞ�2 in Eqs. (15) and

(10b). This results in the following transformed set of equations:

2ZðTÞ @u
@T

¼ 1
X2

@

@X
X2 @u

@X

� �
þ X

dZðTÞ
dT

@u
@X

for 0 < X < 1 and T > 0 ð16aÞ

dZðTÞ
dT

¼ 1
1�ujX¼1

@u
@X

����
X¼1

for T > 0 ð16bÞ

ujX¼1 ¼ hmax � ðhmax � h0Þe�KT ð16cÞ

uðX;0Þ ¼ h0 for 0 < X < 1: ð16dÞ
Because of the coordinate transformation in Eqs. (12) and (13),

the conservative form of Eqs. (10) transformed into a non-
conservative form in Eqs. 16. To maintain mass conservation, Van
De Fliert and Van Der Hout (2000) as well as Van Noorden and
Pop (2007) employed a mass-based transformation that resulted
in a conservative but complex formulation. The coordinate trans-
formation in Eqs. (12) and (13) could in principle lead to a loss of
mass in the computations. However, keeping the discretization
sufficiently small, the effect is limited.

2.5. Discretization

To solve Eqs. (16), we use the forward Euler scheme, following
the work on one-dimensional Stefan’s type problems by Kutluay
et al. (1997) and the work on swelling particles by Bouklas and
Huang (2012). We discretise the spatial domain of X ¼ ½0;1� into
N segments of size DX and we introduce time step DT . Let uk

i

denote the approximation of uðiDX; kDTÞ where i ¼ 0;1;2 . . .N
and k ¼ 0;1;2 . . . :. Note that i ¼ 0 represents the centre of a sphere
and i ¼ N represents the boundary of a sphere. Eq. (16a) is solved
using a forward Euler scheme, where the diffusion is evaluated
by a mid-point scheme:

2ðZkÞu
kþ1
i �uk

i

DT
¼ 1

ðX2
i ÞDX

Jkiþ1
2
� Jki�1

2

h i
þ Xi

dZ
dT

����
k
@u
@X

����
k

i

ð17Þ

We introduce the following approximations:

Jkiþ1
2
¼ Xiþ1

2

� �2 uk
iþ1 �uk

i

DX

 !
ð18aÞ

Jki�1
2
¼ Xi�1

2

� �2 uk
i �uk

i�1

DX

� �
ð18bÞ

@u
@X

����
k

i

¼ uk
iþ1 �uk

i�1

2DX
ð18cÞ
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dZ
dT

����
k

¼ 1
1�uT

i¼n

uk
i¼n �uk

i¼n�1

DX
ð18cÞ

Zkþ1 ¼ Zk þ dZ
dT

����
k

DT ð18dÞ

ukþ1
i¼n ¼ hmax � ðhmax � h0Þe�KðTkþDTÞ ð18eÞ
Following the forward Euler scheme, ukþ1

i can be solved explic-
itly by:

ukþ1
i ¼ uk

i þ
DT

2ZkX2
i DX

 !
Jkiþ1

2
� Jki�1

2

h i
þ DTXi

2Zk

� �
dZ
dt

����
k
@u
@X

����
k

i

ð19Þ

A zero-flux boundary condition at the centre of the sphere is
imposed by considering Eq. (18a) at i ¼ 1 differently, namely:

Jki�1
2
¼ 0, and @u

@x

��k
i ¼

uk
iþ1�uk

i
Dx .

The minimum time step for this set of equations is given by the
minimum time step for a forward Euler scheme for linear diffusion,

which must satisfy DT < 1
2 ðDXÞ2 (note that DT and DX are dimen-

sionless). Although, the main process is that of linear diffusion,
the expansion of the particle resulted in an additional convective
term (see Eq. (16a)). This may cause the time-step to be smaller
than that of linear diffusion. We applied a safety factor of 0.01 on
the minimum time step to ensure that the computed water distri-
bution had non-oscillatory behaviour. After a mesh-independency
check, we set N at 300. The mass convergence of the numerical
simulation was determined by computing the solid volume after
swelling (i.e. after large times), for which we know the exact solu-
tion in dimensionless term, namely: 4

3p. The mass loss was always
less than 0.005 times the initial mass.

We simulate experiments by Esteves (2011), who has studied
the swelling of spherical SAP particles. In that study, h0 was zero
and the maximum value of R

R0
at equilibrium was 2.79, which yields

hmax ¼ 0:95. These values were used for numerical computation.

3. Results

In this work, two distinctive kinetic processes are identified,
namely: diffusion of water into a spherical particle and the water
uptake at the particle surface (i.e. boundary of the modelling
domain) of that particle. Those two processes yield three types of
swelling kinetics, with the value of K as indicator. The first type
is where water uptake at the particle surface is instantaneous
Fig. 1. Profiles of volume fraction of water for instantaneous water uptake at the partic
representing the boundary of the sphere. Note that the maximum values of both u and h
reader is referred to the web version of this article.)
(K ! 1) and thus diffusion controls the swelling kinetics. The sec-
ond type is where diffusion of water is faster than the uptake of
water at the particle surface (i.e. K 	 1). Finally, the third type is
where the value K ¼ Oð1Þ. Then, both diffusion and water uptake
balance and both affect the swelling kinetics. In what follows, we
will evaluate all three regimes, compare our results to experiments
and discuss the usefulness of parameter K in practical applications.

3.1. Instantaneous water uptake at the surface

In this section, we assume that the SAP material at the surface
instantaneously absorbs water to the maximum capacity hmax such
that diffusion controls the swelling kinetics. Thus, in the numerical
scheme, Eq. (18e) reduces to ukþ1

i¼n ¼ hmax. Fig. 1a shows the distri-
butions ofuwithin the particle at different times. These are indeed
diffusive profiles of water migrating into a sphere. Fig. 1b shows
the same diffusive profiles, but now in terms of dimensionless
radius r�, which shows the increase in particle radii and the subse-
quent shift in diffusive profiles.

3.1.1. Comparison with other models
In Fig. 2, the swelling of a spherical particle is plotted as the

radius versus time, using three models found in the literature
and our model for instantaneous water uptake at the particle sur-
face. Expressions for radius and absorption ratios as function of
time are given in Table 1. Obviously, the results are strongly
affected by the value of diffusion coefficient. If we use the same dif-
fusivity, the model by Sweijen et al. (2017) gives a similar initial
swelling rate as the model presented here (see Fig. 2a). But, the
swelling rates starts to deviate when R

R0
is larger than two, after

which the model presented in this paper yields a larger swelling
rate. The initial swelling rates of the models by Buchholz (1998)
and Omidian et al. (1998) are significantly lower than in our case.
Alternatively, we used different values for the diffusion coefficient
in different models to have them approach our result as closely as
possible. This required reducing the value of diffusion coefficient
by multiplying it with a factor Dscale. Results are shown in Fig. 2b
and values of Dscale are given in Table 1.

3.2. Kinetic water uptake at the surface

When the diffusion of water is assumed to be much faster than
the uptake of water at the particle surface (i.e. K 	 1), h will be
almost constant over r�. Thus, hðr�; TÞ will approach hðTÞ when K
approaches zero, where the value of hðTÞ is given by expression
le surface, using ujX¼1 ¼ hmax , for (a) uðX; TÞ and (b) hðr�; TÞ with the green symbols
is hmax < 1. (For interpretation of the references to colour in this figure legend, the



Table 1
Equations found in the literature describing the swelling of one SAP particle.

Equation Dscale Reference

R
R0

¼ Rm
R0

� 1
� �

ð1� e�ktÞ þ 1 0.39 Omidian et al. (1998)

dQ
dt ¼ p2D

R2
0
ðQmax � QÞ 0.069 Buchholz (1998)

dQ
dt ¼ 3Dri

ðr0
i
Þ3

Qmax�Q
Q

� �
0.70 Sweijen et al. (2017)

Note that: Q ¼ MwþMs
Ms

withMw being the mass of absorbed water andMs the mass of
dry SAP. Assuming a spherical particle and incompressibility of water, equations by
Buchholz (1998) and Sweijen et al. (2017) can be rewritten in terms of dR

dt which
would yield RðtÞ by numerical integration. The equation by Omidian et al. (1998)
contains a kinetic constant k that is assumed to be equal to D

R2
0
. The values of

diffusion coefficients were reduced by a factor of Dscale to obtain plots in Fig. 2b.

Fig. 2. Particle radius as function of normalized time T for four different models: (a) assuming a constant value of D for all equations and (b) all equations were fitted to the
curve obtained in this work by multiplying the diffusion coefficient with Dscale reported in Table 1.
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10 d. Therefore, the swelling rate of a particle is then solely depen-
dent on the water uptake rate at the surface of the particle, i.e.
water that enters the particle is instantaneously redistributed by
diffusion. To derive an equation for R�ðTÞ, consider the following
volume balance:

VðTÞ ¼ V0 þ VwðTÞ ð20Þ
where VðTÞ is the total volume of a spherical particle, V0 is the ini-
tial volume and VwðTÞ is the volume of absorbed water. Hence:

4
3
pðR�Þ3 ¼ 4

3
pþ

Z R�

0
hðTÞ4pr2dr ð21Þ

which yields:

ðR�Þ3 ¼ 1þ hðTÞ � ðR�Þ3: ð22Þ
Finally, we obtain:

R�ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1� hðTÞ

3

s
ð23Þ

in which uðTÞ is given by Eq. (16c). Formula 23 is plotted in Fig. 3
for K ¼ 0:5.

3.3. Intermediate regime of water uptake and diffusion

Next, we consider situations where K ¼ Oð1Þ; i.e. both diffusion
and water uptake at the surface balance and both affect the swel-
ling kinetics. We have solved the full set of equations in 16 to sim-
ulate the swelling of a sphere for K values ranging from 0.5 to 100.
Results are shown in Fig. 3. For large values of K (i.e. >10) the solu-
tion will converge to the case of instantaneous water uptake along
the particle surface (see Section 3.1) and thus diffusion becomes
the rate controlling process. This fact is supported by the diffusive
profiles of u in Fig. 4a, b. In contrast, for smaller values of K (i.e.
K 6 1), the solution will converge to that of Eq. (23), where the pro-
files of u are relatively flat compared to larger K values, because
diffusion is much faster than water uptake along the particle sur-
face (see Fig. 4c, d).

3.4. Comparison with experiments

To test our model and the importance of K, we have plotted
experimental data by Esteves (2011) who measured the radius of
roughly spherical SAP particles as a function of time. Hence, these
experimental results should compare to our model of spherical
particles. In Fig. 3, experimental data is plotted as a function of
dimensionless time and fitted to our simulations for instantaneous
water uptake at the particle surface (K ¼ 1). In order to convert
real time of experiments to dimensionless time, a diffusion coeffi-
cient is required following Eq. (9a). This diffusion coefficient is thus
a fitting parameter that has been set to D ¼ 6:0� 10�5 cm2 min�1.
Our results for finite values of K did not yield a good match to
experimental data, whereas K ¼ 1 did result into a good match.
This can be explained by the fact that SAP particles in the work
of Esteves (2011) did not have a coating layer and therefore we
do not expect kinetics of water uptake at the surface of the particle.

3.5. Implications and application of the value of K

In practice, the kinetics of water uptake at the particle surface
can be beneficial for the commercial design of SAP particles or
other swelling products. The kinetics can be changed by applying
a coating or a membrane to the surface of the particle. Such a treat-
ment basically affects the value of parameter K. For example,
slowing-down of the initial swelling rate can be beneficial for a
bed of SAP particles. If the initial swelling rate is too large, the
pores between SAP particles may clog before all water has infil-
trated into the particle bed, leaving parts of the particle bed dry,
which of course is inefficient. Slowing-down of the initial swelling
rate by applying a coating layer, may allow water to redistribute
completely inside a particle bed before the swelling becomes
significant.



Fig. 3. Swelling of a sphere expressed as R�ðTÞ, the value of K is increased from 0.5 to infinity. symbols indicate experimental data by Esteves (2011), using D ¼ 6:0� 10�5

cm2 min�1 and red symbols indicate the solution of Eq. (23) using K ¼ 0:5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Water content profiles for (a, b) K ¼ 10 and (c, d) K ¼ 1. Green symbols indicate the boundary of the particle. Note that the maximum values of bothu and h is hmax < 1.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

412 T. Sweijen et al. / Chemical Engineering Science 172 (2017) 407–413
4. Conclusion

In this research, a model is presented to describe diffusion of
water into a swelling particle, where the particle surface can move
freely. The model is simplified for a spherical particle and solved
using an explicit forward Euler scheme. Modelling results yielded
similar plots of radius over time compared to other models in
the literature, albeit that they all result in distinctively different
diffusion coefficients. A kinetic term was included for water uptake
at the surface of a swelling particle, to study its effect on the swel-
ling rate of that particle. Three regimes were identified based on
the controlling mechanism of swelling, namely: (1) diffusion con-
trolled, (2) water-uptake controlled and (3) both diffusion and
water-uptake controlled. By slowing down the water uptake at
the surface of a particle, using for example a coating layer, the ini-
tial swelling rate can be reduced, which can be employed for engi-
neering purposes.
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Appendix A. Free boundary condition of a swelling spherical
particle

Here, a free-moving boundary condition is derived for a sphere
based on the volume balance in that sphere. Let us start with a sim-
ple volumetric balance, the initial volume (V0) and the volume of
absorbed water (Vw) gives the total volume (V):

V ¼ V0 þ Vw ðA:1Þ
We may rewrite Eq. (A.1) as follows:

4
3
pR3

0 þ
Z R

0
h4pr2dr ¼ 4

3
pR3 ðA:2Þ

Next, Eq. (A.2) is differentiated over time and combined with
Leibniz integral rule, which yields:

Z R

0

@h
@t

4pr2dr ¼ 4pR2 dR
dt

� hb4pR2 dR
dt

ðA:3Þ

We realize that @h
@t can be replaced by D

r2
@
@r r2 @h

@r

� 	
for spherical dif-

fusion which is then integrated to yield the final boundary
condition:

D
@h
@r

����
R

¼ ð1� hðR; tÞÞ dR
dt

ðA:4Þ
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