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Abstract

A Skeleton-stabilized ImmersoGeometric Analysis technique is proposed for incompressible viscous flow
problems with moderate Reynolds number. The proposed formulation fits within the framework of the
finite cell method, where essential boundary conditions are imposed weakly using a Nitsche-type method.
The key idea of the proposed formulation – which was considered in the conforming isogeometric analysis
setting by Hoang et.al. [1] – is to stabilize the jumps of high-order derivatives of variables over the
skeleton of the background mesh. The formulation allows the use of identical finite-dimensional spaces
for the approximation of the pressure and velocity fields in immersed domains. The stability issues
observed for inf-sup stable discretizations of immersed incompressible flow problems [2] are avoided with
this formulation. For B-spline basis functions of degree k with highest regularity, only the derivative of
order k has to be controlled, which requires specification of only a single stabilization parameter. The
Stokes and Navier-Stokes equations are studied numerically in two and three dimensions using various
immersed test cases. Oscillation-free solutions and optimal convergence rates can be obtained.

Keywords: Isogeometric analysis, Immersogeometric analysis, Skeleton-stabilization, Embedded
domain method, XFEM, CutFEM, Finite cell method, Stokes, Navier-Stokes, Stabilization

1. Introduction

Finite Element Analysis (FEA) of incompressible flow problems has been an active topic of re-
search over the last decades, with research interests ranging from theoretical aspects to engineering
applications. In recent years, IsoGeometric Analysis (IGA) – a spline-based finite element simulation
paradigm proposed by Hughes et al. [3] with the aim of establishing a better integration between
Computer-Aided Design (CAD) and FEA – has been studied in the context of incompressible flow
problems. Isogeometric analysis of mixed formulations for incompressible flow problems based on inf-
sup stable velocity-pressure pairs has been studied in detail in the literature, which has led to the
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(a) (b)

Figure 1: Unphysical pressure oscillations are observed when the Stokes problem is solved in the standard finite cell
setting using (a) inf-sup stable isogeometric elements, shown here for Taylor-Hood (see Ref. [2] for details), and (b) using
a Galerkin Least-squares method.

development of a range of isogeometric element families, namely: Taylor-Hood elements [4–6], Sub-
grid elements [6, 7], H(div)-conforming elements [5, 8–10], and Nédélec elements [5]. These element
families have been demonstrated to be suitable for the discretization of incompressible flow problems,
by virtue of the fact that they leverage the advantageous mathematical properties of the spline basis
functions used in isogeometric analysis [11].

The Finite Cell Method (FCM) – an immersed finite element method introduced by Rank et al.
[12] – has been found to be a natural companion to isogeometric analysis. The key idea of the FCM is
to embed a geometrically complex physical domain of interest into a geometrically simple embedding
domain, on which a regular mesh can be built easily. The framework in which IGA and FCM are
integrated – first considered by Schillinger, Rank et al. [13–15] – is also referred to as immersogeometric
analysis [16, 17]. On the one hand immersogeometric analysis facilitates consideration of CAD trimming
curves in the context of isogeometric analysis. On the other hand, it enables the construction of high-
regularity spline spaces over geometrically and topologically complex volumetric domains, for which
analysis-suitable spline parametrizations are generally not available. The isogeometric finite cell method
has been applied to various problems in solid and structural mechanics (see [18, 19] for comprehensive
reviews), in image-based analysis [20, 21], in fluid-structure interaction problems [16, 17], and in various
other application areas.

In Hoang et.al [2] we have found that when the inf-sup stable isogeometric element families for
incompressible flow problems are applied in the finite cell setting, local pressure oscillations generally
occur in the vicinity of cut boundaries. An illustration of this oscillatory behavior is shown in Figure 1a.
When employing the Galerkin-Least square (GLS) method, we observe similar behavior, as shown in
Figure 1b. The occurrence of such oscillations on cut elements with relatively large volume fractions
implies that this problem is related to the inf-sup stability of the discrete problem, rather than to
conditioning issues related to cut elements with small volume fractions. It is important to note that
although the inf-sup stable discretization pairs (and GLS) lead to close-to-optimal converge behavior of
global error measures, the oscillations in the pressure field near the immersed boundaries persist under
mesh refinement. As a consequence, the approximation of quantities of interest related to the immersed
boundaries is below standard, which makes the inf-sup stable (and GLS) isogeometric approach less
attractive for a large class of immersed incompressible flow problems.

In this manuscript we propose an alternative formulation – based on the skeleton-based stabilization
technique developed by Hoang et.al [1] in the context of conforming isogeometric analysis – to resolve
the stability problems associated with immersed inf-sup isogeometric discretization pairs. In this for-
mulation – which can be regarded as a high-regularity generalization of the continuous interior penalty
method by Burman and Hansbo [22] – we rely on stabilization of the mixed form problem by amend-
ing the formulation with a skeleton-based penalty term. This alternative form of stabilization relaxes



the compatibility constraints on the function spaces to be used, which allows us to consider identical
discretization spaces for both the velocity and the pressure fields. Our work is related to developments
that have been made in the context of XFEM and CutFEM [23–27], and is particularly inspired by the
Ghost penalty stabilization technique of Burman and Hansbo [28, 29]. A novelty of our work is that
we fully exploit the maximum regularity of the B-spline basis functions used in IGA, as a consequence
of which the introduced stabilization operator only acts on the interface jumps of the highest order
derivative of the basis functions. As a result we only require a single stabilization term to control both
the inf-sup stability of the mixed problem and its related pressure-space conditioning issues. We herein
propose to supplement the skeleton-based stabilized formulation in [1] with a ghost-penalty term for
the velocity space, which is not required from the inf-sup stability point of view, but which is essential
to control the conditioning of the discretized problem.

This paper is outlined as follows. In Section 2 we commence with the introduction of the unsteady
incompressible Navier-Stokes equations and the essentials of the finite cell method. In Section 3 we then
present the skeleton-stabilized formulation developed and studied in this work. In Section 4 we discuss
the algebraic form of of the developed stabilized formulation, and its effect on the sparsity structure
of the system to be solved. The proposed formulation is studied by a series of numerical test cases in
Section 5, including the case of a three-dimensional image-based analysis of a microstructural porous
medium flow. Conclusions are finally presented in Section 6.

2. Preliminaries

Before we introduce the skeleton-based stabilized formulation in Section 3, we here first introduce
the problem setting for the unsteady Navier-Stokes equations, and the fundamental concepts of the
isogeometric finite cell method.

2.1. The unsteady incompressible Navier-Stokes equations

We consider the unsteady incompressible Navier-Stokes equations on the open bounded domain
Ω ∈ Rd, where d = 2, 3 denotes the spatial dimension of the domain. The Lipschitz boundary ∂Ω is
split in the Dirichlet boundary, ΓD, and the Neumann boundary, ΓN , such that ΓD ∪ ΓN = ∂Ω and
ΓD ∩ ΓN = ∅. The unit normal vector to ∂Ω, which points out of the domain, is denoted by n. For
any time instant t ∈ [0, T ) the Navier-Stokes equations for the velocity field u : Ω × [0, T ) → Rd and
pressure field p : Ω× [0, T )→ R read:

Find u : Ω× [0, T )→ Rd, and p : Ω× [0, T )→ R such that:

∂tu +∇ · (u⊗ u)−∇ · (2µ∇su) +∇p = f in Ω× (0, T ),
∇ · u = 0 in Ω× (0, T ),

u = g on ΓD × (0, T ),
2µ∇su · n− pn = h on ΓN × (0, T ),

u = u0 in Ω× {0}.

(1)

In this problem formulation the symmetric gradient of the velocity field is denoted by∇su := 1
2

(
∇u + (∇u)T

)
and µ represents the kinematic viscosity. The exogenous data f : Ω×(0,∞)→ Rd, g : ΓD×(0,∞)→ Rd,
and h : ΓN × (0,∞) → Rd represent body forces, prescribed velocity, and traction data, respectively.
The initial data in the strong form (1) are denoted by u0 : Ω→ Rd.

To provide a framework for the derivation of the immersed formulation introduced in the next
section, we here first present the weak formulation in the conforming setting. For any vector space V,
we denote by L(0, T ;V) a suitable linear space of V-valued functions on the time interval (0, T ). The
weak formulation of the initial boundary value problem (1) then follows as:

Find u ∈ L(0, T ;Vg,ΓD ) and p ∈ L(0, T ;Q), subject to u(0) = u0,
such that for almost all t ∈ (0, T ):

(∂tu,w) + c(u;u,w) + a(u,w) + b(p,w) = `1(w) ∀w ∈ V0,ΓD ,
b(q,u) = 0 ∀q ∈ Q.

(2)



(a) (b)

Figure 2: Schematic representation of (a) the physical domain Ω and ambient domain A as considered in the finite cell
method, and (b) the ambient domain mesh, T h

A (covering the complete ambient domain), and background mesh, T h

(marked by the yellow background shading).

The linear operators in this formulation are defined as

c(v;u,w) := (v · ∇u,w) , (3a)

a(u,w) := 2µ (∇su,∇sw) , (3b)

b(q,w) := − (q, divw) , (3c)

`1(w) := (f ,w) + 〈h,w〉ΓN , (3d)

where (·, ·) denotes the inner product in L2(Ω) and 〈·, ·〉ΓN denotes the inner product in L2(ΓN ). The
function spaces in (2) are defined as

Vg,ΓD :=
{
u ∈ [H1(Ω)]d : u = g on ΓD

}
, Q := L2(Ω), (4)

and the velocity test space, V0,ΓD , is taken as the homogeneous version of Vg,ΓD . In the case of
pure Dirichlet boundary conditions the pressure is determined up to a constant, which then requires
supplementation of the additional pressure condition:

Q := L2
0(Ω) ≡

{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0

}
. (5)

2.2. The finite cell method

In the finite cell method, the physical domain of interest, Ω, is immersed into a geometrically simple
ambient domain, A ⊃ Ω, as illustrated in Figure 2a. In this manuscript we consider the ambient domain
to be rectangular, so that it can be partitioned by a regular grid with uniform spacing h > 0. We refer
to this partitioning as the ambient domain mesh, T hA . Elements in this ambient domain mesh that do
not intersect the physical domain are discarded in the finite cell analysis, which leads to the definition
of the finite cell background mesh:

T h := {K ∈ T hA : K ∩ Ω 6= ∅} (6)

The ambient domain mesh and background mesh are illustrated in Figure 2.

The conceptual idea of the finite cell method is to construct a suitable discretization space on the
background mesh, and to use that basis in a Galerkin formulation pertaining to the physical domain.
Dirichlet boundary conditions on non-conforming edges are typically enforced weakly, most commonly



by means of Nitsche’s method [30]. We will introduce the Nitsche formulation for the problem (1) in
Section 3. In the remainder of this section we introduce the B-spline basis defined over the background
mesh, and the integration procedure employed to evaluate volume and (immersed) surface integrals over
elements that are cut by the immersed boundary.

2.2.1. B-spline basis

By virtue of the fact that in the finite cell method basis functions are constructed on a regular
background mesh, it enables the isogeometric analysis of complex-shaped physical domains. In this
manuscript we restrict ourselves to a single patch open B-spline basis over the ambient domain mesh,
defined by non-decreasing knot vectors in all spatial directions δ = 1, . . . , d,

Ξδ = [ξδ1 , . . . , ξ
δ
1︸ ︷︷ ︸

(k+1)−time

, ξδ2 , . . . , ξ
δ
mδ−1, ξ

δ
mδ , . . . , ξ

δ
mδ︸ ︷︷ ︸

(k+1)−time

], (7)

In accordance with the definition of open B-splines the first and last knot values are repeated k + 1
times, where k denotes the global isotropic polynomial degree of the basis. We align the knot vectors
with the ambient domain, which essentially implies that the we have an identity geometric map between
the parameter domain and the ambient domain. The spacing between two consecutive knots is therefore
equal to the global isotropic mesh parameter h.

Using the knot vectors (7) a B-spline basis of degree k can be constructed over the ambient domain
by means of the recursive Cox-De Boor formula [31]. We denote this B-spline basis by N k

A = {Nk
A,I :

A → R}nA
I=1, where the total number of basis functions is equal to nA = ⊗dδ=1{mδ + k − 1}, with mδ

the number of unique knot values per direction. In the finite cell analysis we discard the basis function
that are not supported on the background mesh T h, so that the B-spline basis follows as:

N k := {N ∈ N k
A : supp(N) ∩ T h 6= ∅} (8)

Note that, by definition, all basis functions in N k have positive support over the physical domain Ω.
The cardinality of N k is denoted by n ≤ nA. We herein consider maximum regularity B-spline bases
– as indicated by the non-repeated internal knot values in (7) – so that the basis functions are Ck−1

continuous. The B-spline function space Sk spanned by the basis N k is therefore a finite dimensional
subspace of the Sobolev space Hk(Ωh), where Ωh = int(

⋃
K∈T h

K).

2.2.2. Cut cell integration

For elements in the background mesh that are intersected by the boundaries of the physical domain,
standard quadrature rules are inaccurate, since effectively discontinuous functions are integrated over
such cut cells. The FCM therefore generally employs an advance numerical-integration technique for
cut cells. Herein we use the bisectioning-based segmentation scheme proposed in [21] in the context of
the isogeometric finite cell analysis of image-based geometric models, which also enables us to extract
a parametrization and quadrature rules for the immersed boundaries.

We illustrate the bisection-based tessellation scheme in Figure 3 for completeness. The element-by-
element routine commences with the evaluation of a level set function in the vertices associated with
a %max-times uniform refinement of the element. This level set can either be derived from voxel data
in a scan-based analysis, or a signed-distance function can be considered in the case that the geometry
is provided by a CAD model. The integration points for a cut cell are assembled by traversing the
levels of uniform refinement, where for each sub-cell in that level it is determined whether the interface
passes through it. If all vertices of a sub-cell exceed a specified threshold value (zero in the case of a
signed-distance function) the sub-cell is kept as an integration sub-cell. Otherwise a further subdivision
of the sub-cell is considered, and the same check is performed on the next level. On the lowest level this
recursion is closed with a tessellation procedure. From an implementation perspective the integration
points and weights on all sub-cells are collected on the level of the cut-element, which essentially provides
us with an integration scheme tailored to the cut element.



Figure 3: Illustration of the bisection-based tessellation scheme used to generate quadrature rules for the cells that are
cut by the immersed boundary. The vertex markers indicate whether the employed interpolant of the level set function
is zero (on the boundary), positive (inside the domain), or negative (outside the domain). The red points in the sub-cell
zooms are an illustration of the distribution of the integration points in such cells.

The tessellation procedure used on the deepest level of integration refinement provides us with
the possibility to extract a parametrization of the boundary. In essence, the immersed boundary
is reconstructed on an element-by-element basis by identifying the faces of the integration sub-cells
that coincide with the immersed boundary. The collection of sub-cell faces that approximates the
immersed boundary provides a piece-wise linear parametrization of this boundary. Using this piece-
wise parametrization, quadrature rules can be constructed. Evidently, the refinement parameter %max

controls the accuracy with which the geometry is approximated.

3. Skeleton-stabilized immersed isogeometric analysis for the Navier-Stokes equations

In this section we introduce the skeleton-stabilized immersed isogeometric analysis formulation
for the Navier-Stokes equations. We commence with the definition of the topological structures on
which this stabilization technique is based, after which we present the two stabilization aspects in our
formulation, viz. the Ghost penalty stabilization of the velocity components at the cut boundaries, and
the pressure stabilization on the skeleton of the background mesh.

(a) (b)

Figure 4: Schemtatic representation of (a) the skeleton structure, and (b) the ghost interface structure.



3.1. The background mesh: skeleton structure and ghost structure

We consider the background mesh T h as defined in Section 2.2. The stabilized formulation presented
herein is based on the skeleton of this background mesh, which is defined as

Fhskeleton = {∂K ∩ ∂K ′ | K,K ′ ∈ T h,K 6= K ′}. (9)

This skeleton, for which the mesh parameter h is associated with that of the background mesh, is
illustrated in Figure 4a. Note that the boundary faces of the mesh T h are not a part of this skeleton
mesh.

Besides the skeleton structure (9) we also consider that part of the skeleton which coincides with
the faces of all cut cells in the domain, to which we refer as the ghost skeleton:

Fhghost = Fhskeleton ∩
{
F | F ⊂ ∂K : K ∈ T h,K ∩ ∂Ω 6= ∅

}
(10)

This ghost skeleton structure is illustrated in Figure 4b, where the mesh parameter h is still associated
with that of the background mesh. Note that this structure does also contain some faces that do not
intersect the boundary of the physical domain.

Since we herein consider single patch discretizations of the ambient domain with maximal regularity
the basis functions are Ck−1 continuous over all faces in the skeleton mesh Fskeleton. Therefore, the
jumps in the normal derivative up to order k − 1 of all functions in Sk = span(N k) vanish:

J∂infKF = 0, 0 ≤ i ≤ k − 1, ∀f ∈ Sk, (11)

where the jump operator J·K associates to any function f in the broken Sobolev space {f ∈ L2(Ω) :
f |K ∈ H1(K), ∀K ∈ T h} the L2(Fhskeleton)-valued function:

JfK = f+ − f−

The superscripts (·)± refer to the traces of f on the two opposite sides of each face F ∈ Fhskeleton, with
an arbitrary allocation of + and −.

3.2. The Skeleton-stabilized finite cell formulation

In this contribution we study the discretization of problem (1) using identical highest smoothness
spline discretizations for the velocity and pressure fields:

Vh :=
[
Sk
]d
, Qh := Sk. (12)

The Skeleton-stabilized finite cell formulation for the system (1) reads:
Find uh ∈ L(0, T ;Vh) and ph ∈ L(0, T ;Qh), subject to uh(0) = uh0 ,
such that for almost all t ∈ (0, T ):

(∂tu
h,wh) + c(uh;uh,wh) + ah(uh,wh) + shghost(u

h,wh) + bh(ph,wh) = `h1 (wh) ∀wh ∈ Vh,

bh(q,uh)− shskeleton(ph, qh) = `h2 (qh) ∀qh ∈ Qh,
(13)

where uh0 corresponds to a projection of the initial data on [Sk]d, and where the linear operators
as introduced in the conforming setting in equation (3) are supplemented with additional terms for
Nitsche’s imposition of the boundary conditions [30]:

ah(uh,wh) := a(uh,wh)− 2µ
[
〈∇suh · n,wh〉ΓD + 〈∇swh · n,uh〉ΓD

]
+ µ〈βh−1uh,wh〉ΓD , (14a)

bh(qh,wh) := b(qh,wh) + 〈qh,wh · n〉ΓD , (14b)

`h1 (wh) := `1(wh)− 2µ〈∇swh · n,g〉ΓD + µ〈βh−1g,wh〉ΓD , (14c)

`h2 (qh) := 〈qhn · g〉ΓD , (14d)



where 〈·, ·〉ΓD denotes the inner product in L2(ΓD). The two stabilization operators that are appended
to the weak form (13) are defined as:

shghost(u
h,wh) :=

∑
F∈Fghost

∫
F

γ̃µh2k−1J∂knuhK · J∂knvhK ds, (15a)

shskeleton(ph, qh) :=
∑

F∈Fhskeleton

∫
F

γµ−1h2k+1J∂knp
hKJ∂knq

hK ds, (15b)

where γ̃ and γ denote certain suitable positive stabilization parameters; see Remark 2 below.

The operator sghost(u
h,wh) is referred to as the Ghost-penalty operator [28, 29]. This term – which

penalizes the (non-vanishing) jump in the k-th order normal derivative on the ghost skeleton, enables
scaling of the Nitsche penalty term by the reciprocal mesh size parameter h−1 of the background mesh,
independent of the cut-element configurations. Without the ghost-penalty term, the Nitsche term
would have to be based on the reciprocal of the cut-element size to ensure stability. However, this
would result in configuration-sensitive stability and severe ill-conditioning in critical cases such as sliver
cut configurations. The ghost-penalty stabilization hence effectively controls the conditioning of the
velocity contributions to the formulation. The condition numbers then scale as in the case of conforming
discretizations, and are independent of the configuration of the cut cells [28, 29].

The operator sskeleton(ph, qh) in (13) is referred to as the Skeleton-penalty operator, which was
developed for conforming isogeometric discretizations of the unsteady incompressible Navier-Stokes
equations in [1], and is applied here without any modification to the immersed setting. This term
allows to use identical pairs of spaces for the velocity and pressure fields, as defined in equation (12).
It should be emphasized that the skeleton structure is defined not only inside the physical domain but
in the whole background mesh. In this way, the pressure-stabilization not only ensures inf-sup stability
over the complete domain but also resolves the conditioning issue related to the pressure field in the
case of pathological cut configurations.

Remark 1. We note that the stabilization parameters γ and γ̃, and the viscosity parameter µ, in the
operators (15a) and (15b) are kept inside the integrand for the sake of generality. For the simulations
considered herein – where we focus on moderate Reynolds numbers flows – these scalings are defined
globally. This global scaling may not extend to, e.g., the more general case of convection-dominated
flows.

Remark 2. The positive parameters γ and γ̃ are selected in an ad hoc manner, where an important
guideline is that they should decrease with increasing regularity. In the full regularity setting considered
herein, this implies that they decrease with increasing order of the discretization. Since we are using
identical highest-regularity B-spline spaces for velocity and pressure fields, we have found that for our
test cases acceptable results are generally obtained by assigning the same value to both parameters, i.e.
γ = γ̃.

Remark 3. The pressure skeleton-stabilization term and the ghost penalty stabilization term scale
differently with the mesh size, viz. with h2k+1 and h2k−1, respectively. This difference stems from the
fact that the velocity field resides in H1, while the pressure resides in L2. Note that although we have
restricted ourselves herein to regular meshes with global and isotropic size h, there is no fundamental
restriction to the application of the formulation (13) in the context of non-uniformly spaced grids.

The rationale behind the skeleton-stabilized formulation – which for sufficiently smooth velocity and
pressure solutions (u ∈ [Hk(Ω)]d and p ∈ Hk(Ω)) is consistent with (1) – is that it effectively targets
the shortcomings observed using inf-sup stable spaces. The skeleton stabilization operator (15b) is tied
to the background domain, in the sense that it is completely independent of the shape and volume
fraction of the cut cells it pertains to. As a consequence, the stabilizing effect of the operator does
not decrease with decreasing volume fractions. This contrasts the situation in which inf-sup stable
pairs are considered, since in that setting the cut cell characteristics have been observed to impact the
inf-sup stability [2]. Moreover, the stabilization operator (15b) can be conceived of as a weakly imposed



constraint on the highest-order non-vanishing derivative of the pressure field, which essentially means
that it controls the smoothness of the extension of the interior domain into the exterior domain. In
[1] we have demonstrated that the operator (15b) is related to the least squares minimization problem
for the highest-order derivative jumps. Thereby the operator effectively suppresses oscillations in the
pressure field near the immersed boundaries.

4. The algebraic form

Using the B-spline basis functions as defined in Section 2.2, the velocity and pressure field can be
expressed as

uh(x, t) =

nu∑
i=1

Ni(x)ûi(t), ph(x, t) =

np∑
i=1

Ni(x)p̂i(t). (16)

Note that the basis functions for the velocity field are printed in bold font to indicate that these are
vector-valued. The coefficients corresponding to these basis functions are assembled in the vector û(t) =
(û1, û2, . . . , ûnu)T . The basis functions for the pressure are evidently scalar-valued, with associated
coefficient vector p̂(t) = (p̂1, p̂2, . . . , p̂np)T . In the absence of constraints, the number of velocity-degrees
of freedom, nu, is d times that of pressure degrees of freedom, np.

Consistent with (16) the discrete approximation spaces can be defined as Vh = span{Ni}nui=1 and
Qh = span{Ni}

np
i=1, so that the formulation (13) can be cast into a time-dependent algebraic system of

equations of size n = nu + np:
For each t ∈ (0, T ), find û = û(t) ∈ Rnu and p̂ = p̂(t) ∈ Rnp , given û(0) = û0, such that:

M∂tû + [C(û) + A + Sghost] û + BT p̂ = f1,
Bû− Sskeletonp̂ = f2.

(17)

We employ Crank-Nicolson time integration with Picard iterations to solve this nonlinear algebraic
problem in time. See Ref. [1] for details regarding the solution algorithm.

The matrices and vectors in (17) pertaining to the standard volume and boundary surface terms
can be expressed in terms of the operators (14) as:

C(û)ij := c(û;Nj ,Ni), (18a)

Aij := ah(Nj ,Ni), (18b)

Bij := b(Ni,Nj), (18c)

f1,i := `h1 (Ni) (18d)

f2,i := `2(Ni). (18e)

The stabilization matrices in (17) pertain to the skeleton and ghost structure of the background mesh,
Fhskeleton and Fhghost, respectively, and hence require data structures to evaluate the jump of high-order
derivatives of the basis functions across the background mesh element interfaces through the operators
in (15) as:

Sskeleton,ij = shskeleton(Nj , Ni), (19a)

Sghost,ij = shghost(Nj ,Ni). (19b)

Due to the fact that the jump operators on the highest-order derivatives of the B-spline basis
functions provide additional connectivity between basis functions, the stabilization matrices (19) have
an effect on the sparsity pattern of the algebraic problem. In Figure 5 we present a comparison of
the sparsity patterns of the system matrices for the cases of a second-order (k = 2) B-spline basis as



considered herein and a second-order (k = 2) Lagrange basis (closely resembling the continuous interior
penalty method). Note that since both bases are constructed over the same background mesh, the
number of Lagrange basis functions is significantly larger (approximately k-times) than the number of
B-spline basis functions, by virtue of the fact that, as opposed to Lagrange basis functions, for full-
regularity B-splines the number of basis functions does not scale proportionally with the degree of the
basis to the power d.

(a) B-spline basis (b) Lagrange basis

Figure 5: Illustration of the sparsity patterns of the system matrix corresponding to (17) for (a) a second-order B-spline
basis, and (b) a second-order Lagrange basis. The stencil of the B-spline case is smaller than that of the Lagrange case.
See Fig. 6 for more elaborations. Note that here both bases are constructed over the same background mesh and therefore
result in different numbers of degrees of freedom; the figure sizes are thus not of the same scale.

Inspection of the velocity-velocity and pressure-pressure blocks reveals that the footprint of the
stabilization operators have a different effect for the two bases, in the sense that for the k = 2 case
2k = 4 off-diagonal bands are observed for the Lagrange basis, and k + 1 = 3 for the B-spline basis.
This difference – which becomes more pronounced when the degree k increases – was also observed in
the mesh conforming case in Ref. [1], with the difference that in the immersed setting both the velocity
and pressure space are stabilized, thereby making the impact of the stabilization operators on the
computational effort larger in the immersed setting. Following the arguments in Ref. [1], the difference
in number of off-diagonal bands can be explained by comparison of the one-dimensional B-spline and
Lagrange bases, as shown for the cubic (k = 3) case in Figure 6. This Figure corroborates that in the
case of full-regularity B-splines all derivative jumps up to order k − 1 vanish across element interfaces,
as a result of which only the k-th derivative jump operator impacts the sparsity pattern. The number of
off-diagonal bands for the stabilization operators is therefore in this case equal to k+ 1. In contrast, for
Lagrange bases, the lower-order derivative jumps are non-vanishing, as a result of which 2k off-diagonal
bands appear.

5. Numerical simulations

In this section we investigate the numerical performance of the proposed immersed skeleton-stabilized
formulation. In all cases, the system (13) is solved using identical highest-regularity B-spline spaces
for the approximations of the velocity and pressure fields. Unless stated otherwise, the number of
bi-sectioning levels that determines the accuracy of the geometry representation is taken equal to six
in the two-dimensional simulations, and equal to five in the three-dimensional case. Evidently, when
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studying higher-order approximations, one ideally wants to resolve the geometry as closely as possi-
ble. The above-mentioned selected levels of bi-sectioning are chosen such that the simulations remain
computationally tractable.

5.1. Steady Navier-Stokes flow in a quarter annulus domain

We consider the steady Navier-Stokes equations on an open quarter-annulus domain

Ω =
{

(x, y) ∈ R2
>0 : R2

1 < x2 + y2 < R2
2

}
,

with inner radius R1 = 1 and outer radius R2 = 4; see Figure 7. Dirichlet boundary conditions are
prescribed on the entire boundary ∂Ω = ΓD. The body force f and Dirichlet data g are selected in
accordance with the manufactured solution

u1 = 10−6x2y4(x2 + y2 − 1)(x2 + y2 − 16)(5x4 + 18x2y2 − 85x2 + 13y4 − 153y2 + 80),

u2 = 10−6xy5(x2 + y2 − 1)(x2 + y2 − 16)(102x2 + 34y2 − 10x4 − 12x2y2 − 2y4 − 32),

p = 10−7xy(y2 − x2)(x2 + y2 − 16)2(x2 + y2 − 1)2 exp
(
14(x2 + y2)−1/2

)
,

(20)

of problem (1) without the inertia term and with viscosity µ = 1. This manufactured solution is adopted
from Refs. [2, 32]. Note that u1 and u2 vanish on ∂Ω, and hence g = 0. Moreover, the manufactured
pressure solution complies with the zero-average pressure condition

∫
Ω
p = 0, which is imposed here by

means of a Lagrange multiplier.

Figure 7: Geometry definition of the quarter-annulus ring problem.

We tested this problem for the Stokes case (µ = 0) in Ref. [2] with different families of inf-sup
stable isogeometric spaces. A representative result for that setting is shown in Figure 1a, from which
unphysical pressure oscillations in the vicinity of the cut elements are clearly observed. Using inf-sup
stable pairs, similar oscillations are also observed in the Navier-Stokes case. In contrast, the pressure
field computed using the skeleton-stabilized formulation (13) – illustrated in Figure 8 for the case of
quadratic B-splines with a 21 × 21 elements ambient domain mesh – is free of oscillations. Note that
the physical domain is completely immersed in the ambient domain, in the sense that none of the
boundaries conform to the background mesh.

In Figure 9 we present mesh convergence results for the proposed stabilized formulation, where
a sequence of uniformly refined background meshes is generated starting from the 11 × 11 elements
coarsest ambient domain mesh. The finest level ambient domain mesh contains 176×176 elements. We
consider k = 1, 2, 3 full-regularity B-splines with stabilization parameters γ = 10 for k = 1, γ = 0.1 for
k = 2, γ = 5 × 10−4 for k = 3 and γ̃ = 10−k−1 for all k. We observe optimal rates of convergence of



Figure 8: Pressure solution of the steady Navier-Stokes equations with µ = 1, computed using the skeleton-stabilized
formulation with quadratic B-splines. The original ambient domain mesh consists of 21× 21 elements.

k + 1 and k for the L2-norm and H1-norm of the velocity field, respectively. For the L2-norm of the
pressure we observe the optimal rate of k. It is notable that the convergence behavior of the stabilized
formulation considered here is highly regular on all considered meshes, as opposed to the convergence
behavior of the non-stabilized FCM formulation; cf. [2].

In Figure 10 we study the solution sensitivity with respect to the skeleton stabilization parameter
γ, where the ghost-penalty parameter is fixed at γ̃ = 5 × 10−3. The h-convergence behavior of the
solution using C1-continuous quadratic B-splines is studied for a wide range of stabilization parameters,
viz. γ ∈ (5 × 10−5, 10). We observe that the pressure stabilization parameter γ does not affect the
accuracy of the velocity field in the L2-norm and H1-norm. This behavior is expected, as the Skeleton-
penalty term acts only on the pressure field, similar as in the conforming isogeometric analysis setting
considered in Ref. [1]. The pressure solution accuracy is affected by the selection of the stabilization
parameter, but Figure 10 conveys that the parameter can be selected from a wide range (approximately
γ ∈ (5× 10−4, 5× 10−1)) with minor influence on the accuracy. The convergence rate remains optimal
for all considered choices of the stabilization parameter.



(a) L2 velocity error (b) H1 velocity error

(c) L2 pressue error

Figure 9: Mesh convergence study of the steady Navier-Stokes equations with µ = 1 in a quarter annulus ring using the
skeleton-stabilized formulation with linear, quadratic and cubic full-regularity B-splines.



(a) L2 velocity error (b) H1 velocity error

(c) L2 pressure error

Figure 10: Sensitivity of the quadratic spline approximation of the Navier-Stokes problem with µ = 1 on the quarter
annulus ring with respect to the stabilization parameter γ.

5.2. Navier-Stokes flow around a cylinder

We revisit the benchmark problem proposed by Schäfer and Turek [33], which we considered in
the mesh-conforming isogeometric analysis setting in Ref. [1]. In this test case a cylinder of radius
R = 0.05 m is placed in a channel of height H = 0.41 m and length L = 2.2 m. The center of the
cylinder is positioned at a horizontal distance of W = 0.2 m from the inflow boundary at x = 0, and at
a vertical distance of W = 0.2 m from the bottom channel wall at y = 0. Note that the cylinder has a
small offset with respect to the center line of the channel, introducing a non-symmetry in the problem.
At the inflow boundary the parabolic flow profile

u(0, y) =

(
4Umy(H − y)/H2

0

)



with maximum velocity Um is imposed. There is no slip at the bottom and top boundaries, as well as
along the surface of the cylinder, and a natural boundary condition is used at the outflow boundary
(x = L). The kinematic viscosity of the fluid is taken as µ = 1× 10−3 m2/s.

We consider the case of Re = 20 – with the Reynolds number defined as Re = 2ŪR/µ (with mean
inflow velocity Ū = 2

3Um – for which a steady flow is obtained. We consider a sequence of uniform
refinements of a relatively coarse ambient domain mesh consisting of 36 × 22 elements. This coarsest
level mesh is a non-uniformly spaced full-regularity B-spline patch, with the knot values selected so
that relatively small elements are obtained in the neighborhood of the cylindrical inclusion. The outer
boundaries of the ambient domain mesh coincide with the boundaries of the physical domain. The
essential boundary conditions are, however, still enforced weakly by Nitsche’s method. Figure 11 shows
the speed and pressure computed on the three times refined second-order B-spline mesh, which results
in a system of ndof = 148476 degrees of freedom. The obtained result is visually in good agreement with
the benchmark result, and is free of pressure oscillations near the immersed boundary of the cylinder.

Figure 11: Velocity magnitude (top) and pressure (bottom) solutions of the steady cylinder flow problem using quadratic
B-splines with ndof = 148476.

In Table 1 we present the mesh converge results for various quantities of interest, viz. the lift and
drag coefficients, cL and cD, respectively, and the pressure drop over the cylinder, ∆p. The drag and
lift coefficients are defined as

cD =
FD
ρŪR

=
R(u, p; `1)

ρŪR
, cL =

FL
ρŪR

=
R(u, p; `2)

ρŪR
,

where FD and FL are the resultant drag and lift forces acting on the cylinder, which are evaluated
weakly as (see e.g., [34–36])

R(u, p; `i) := (∂tu, `i) + c(u;u, `i) + a(u, `i)− 2µ〈∇s`i · n,u− g〉ΓD + b(p, `i),

with `i ∈ [H1
0,∂Ω\Γ(Ω)]d and `i|Γ = −ei, i = 1, 2. The pressure drop is defined as

∆p = p(W/2−R,W/2)− p(W/2 +R,W/2).



Level ndof hcylinder CD CL ∆p
0 2724 0.0142857 5.85317738567 0.009231742514 0.18749814772
1 9984 0.0071428 5.57503959343 0.011002907897 0.12424885895
2 38052 0.0035714 5.57961186549 0.010542479971 0.11504949327
3 148476 0.0017857 5.57989543774 0.010575002816 0.11703150638

Ref. [37] 5.57953523384 0.010618948146 0.11752016697

Table 1: Computed values of the drag and lift coefficients and pressure drop on four refinement levels using the skeleton-
stabilized formulation with quadratic B-splines. The mesh resolution in the proximity of the cylinder is indicated by
hcylinder, and the total number of degrees of freedom by ndof .

From Table 1 it is observed that on the finest mesh all quantities of interest are in excellent agreement
with the benchmark result [37]. We note that – despite the fact that we here have selected the bi-
sectioning integration depth to ten – with the higher-order approximation of these quantities of interest
we anticipate deterioration of the approximation properties associated with the reduced geometric
regularity of the immersed boundary approximation. We expect that the loss of convergence rate
especially observed for the drag coefficient can be attributed to this, but further investigation of this
aspect is warranted.

5.3. Scan-based analysis of a porous medium flow

To demonstrate the potential of the proposed formulation for geometrically and topologically com-
plex three-dimensional domains, we consider a creeping flow through a porous medium. The porous
medium under consideration is made of sintered glass beads. Three-dimensional gray-scale voxel data
of the specimen is obtained by a µCT-scanner with a voxel resolution of 25µm. We here consider a
representative domain of 50× 50× 50 voxels.

(a) Voxel domain (b) Immersogeometric domain

Figure 12: Two µCT-based geometric models of a sintered glass beads porous medium specimen. The original scan data
consists of 125000 gray-scale voxels with a resolution of 25µm.

In this numerical simulation we compare the immersogeometric approach considered in this work
with a voxel-based analysis, which is commonly the method of choice for this type of analyses. The
geometric model for the voxel-based analysis is obtained by direct segmentation of the gray-scale data,
where all gray-scale values larger than a specified threshold are eliminated from the domain. The voxel
model of the segmented void space – with a porosity of 28% – is shown in Figure 12a. The B-spline
based finite cell domain is obtained using the procedure proposed in Ref. [21]. First the gray-scale



voxel data is smoothened by convolution of that data with a (second-order) B-spline basis constructed
over the voxel grid, an operation that bears resemblance with Gaussian blurring. Then a relatively
coarse (second-order) B-spline mesh, i.c. consisting of 12×12×12 elements, is created over the ambient
domain matching the scan size, so that the outer boundaries of the pore space reside in the boundaries
of the scan domain. The smooth B-spline level set function is then segmented using the bi-sectioning
procedure described in Section 2.2 with a bi-sectioning depth of two, where the threshold is calibrated
based on the porosity of the voxel model. The corresponding integration mesh – again with a porosity
of 28% – is shown in Figure 12b.

(a) FLUENT: Velocity streamlines (b) Immersed: Velocity streamlines

(c) FLUENT: Pressure (d) Immersed: Pressure

Figure 13: Comparison of the voxel method and immersogeometric analysis results for the sintered glass beads specimen.
The units of velocity and pressure are m/s and Pa, respectively.

Comparison of the two geometric models reveals that both models are visually very similar in terms
of micro-structural features, which is expected based on the calibrated porosity. Evidently, the surface
representation of the models is completely different. Whereas a staircase representation is obtained in
the voxel model, a piecewise linear representation of the surface is obtained in the immersogeometric
model, where it is noted that the intra-element curvature of the surface is partially recovered by the bi-
sectioning operation (i.e., the geometric linearization error is associated with the size of the integration
sub-cells, and not with that of the size of the computational background mesh). This difference in
surface representation translates directly in a significant difference of the internal surface area, which
is equal to 15.5 mm2 for the voxel model, and to 9.45 mm2 for the immersogeometric model. Indeed,



a significantly higher surface area is expected in the voxel representation. Adequate representation of
the surface is critical in many situations, for example when surface reactions are considered such as in
the case of biofilm growth and mineral dissolution/precipitation in porous media [38], or when one is
interested in contact line dynamics for multi-phase porous media flows or elasto-capillarity [39–41].

In Figure 13 we compare the analysis results obtained using the two approaches for a creeping flow
governed by the Stokes equations with viscosity µ = 10−3 Pa · s. The flow through the porous medium
is forced by imposition of a pressure difference of 1 Pa between the inflow (left) and outflow (right)
boundaries. All velocity components are zero on the other lateral boundaries, and no slip conditions
are imposed on the interior surface. The voxel method results are obtained using FLUENT, which
is essentially a finite volume method where the degrees of freedom are closely related with the 35383
pore space voxels. The immersogeometric results are obtained on the above-mentioned mesh using a
second-order (k = 2) B-spline space, which contains approximately 13 times fewer degrees of freedom
than the FLUENT mesh. The skeleton-penalty and ghost-penalty parameters are taken as γ = 10−2

and γ̃ = 10−4, respectively. From Figure 13 we observe the results of both models to be in good
correspondence, despite the difference in computational resolution. Let us note that although, because
of post-processing artefacts, the streamline patterns for the two simulations are visually distinct, the flow
fields are in fact very similar. It is important to note, however, that in terms of computational accuracy
the two methods are fundamentally different. In the case of the voxel method, the computational
resolution is closely tied to the geometric model, whereas for the immersogeometric approach, the
computational mesh resolution can be controlled independent of the geometric model. As demonstrated
in Ref. [21] for an elasticity problem, the decoupling of the computational resolution from the geometric
model opens the doors to preforming (goal-)adaptive analyses with optimized meshes. In our future
work we aim at applying a similar strategy to optimally compute homogenized permeability coefficients.
Further optimization of the employed cut cell integration procedures in terms of computational effort
– which, per-element, is significantly smaller for the voxel method – is required to allow upscaling to
large scale specimens.

6. Conclusions

A stabilized formulation is proposed for the (immersed) finite cell simulation of unsteady incompress-
ible flow problems using identical B-spline bases for the velocity and pressure fields. This formulation
extends the developments in Ref. [1], where mesh-conforming isogeometric analysis of incompressible
flow problems using identical pressure and velocity bases was considered. The pivotal idea behind the
considered stabilization technique – which can be regarded as the isogeometric extension of the continu-
ous interior penalty method – is that the inf-sup condition is bypassed by supplementing a penalty term
for basis function derivative jumps across element interfaces, thereby effectively penalizing oscillatory
pressure behavior. The mesh-conforming formulation is amended with a ghost-penalty stabilization to
resolve ill-conditioning issues associated with small volume fraction cut cells in the immersed finite cell
setting. This ghost-penalty term bears close resemblance with the pressure-stabilization operator, but
acts on the velocity field in the vicinity of the immersed boundaries only.

An important aspect of this work is that we fully leverage the smoothness properties of the full-
regularity B-spline basis functions constructed over the background mesh, in the sense that the stabiliza-
tion operators only act on the highest-order normal derivatives of the basis functions via their interface
jumps. All lower order derivatives vanish as a result of the continuity properties of the B-spline basis.
One advantage of this isogeometric approach in comparison to the case of a Lagrange-based analysis is
that it only requires a penalty parameter for the highest-order derivative jump. Moreover, the impact
of the stabilization term on the sparsity pattern of the system matrix is significantly reduced when full-
regularity B-splines are considered instead of Lagrange finite elements. This is an important benefit of
the considered isogeometric approach from the perspective of computational effort.

In a series of two-dimensional benchmarks problems we have observed optimal rates of convergence
for the L2 and H1-norms of the velocity field and the L2 norm of the pressure field. In comparison to
the immersed simulation results based on inf-sup stable isogeometric finite element pairs considered



in Ref. [2], we observe oscillation-free pressure fields near the cut boundaries. As a result, using
the skeleton-based stabilization technique considered herein, quantities of interest pertaining to the
immersed boundaries can be computed reliably. It is noteworthy, however, that such quantities of
interest are affected by the regularity of the immersed boundary representation, which in this work was
based on a piece-wise linear representation corresponding to the bi-section based tessellation scheme
used to construct quadrature rules for cut cells and their immersed boundaries.

An image-based three-dimensional analysis of a flow through a porous medium was presented, where
the geometry is defined by segmentation of the smoothened µCT-scan voxel data. This simulation
result demonstrates that the proposed stabilization technique scales to the three-dimensional setting,
which opens the door to applying B-spline discretizations to topologically and geometrically complex
volumetric domains.

The simulations considered herein were restricted to moderate Reynolds number flows on uniform
background meshes. In this setting satisfactory results are obtained when the skeleton penalty pa-
rameter and ghost penalty parameter are taken equal. The rates of convergence have been observed
to be insensitive to the choice of the penalization parameters for a wide range of considered values.
Consistent with observation in the conforming case, the magnitude of the L2 pressure error is observed
to be influenced by the choice of the parameters, but a significant range of parameters exists for which
this error is insensitive to the precise values of the parameters. This makes ad hoc selection of the
parameters practical. The development of more specific selection criteria – preferably in the form of
rigorously derived explicit expressions – is an import aspect of the further development of the proposed
simulation framework.

As part of the further development of the mathematical analysis of the proposed formulation, in
our future work we aim at obtaining a more fundamental understanding of the influence of geometric
irregularities on the approximation quality. In relation to this, we also aim at exploiting the locally
refined spline discretizations that can be constructed over the regular background mesh, and to use
these refinements in a mesh-adaptive analysis. Extension to convection-dominated problems – which
is a non-trivial extension in the sense that an additional convection-stabilization technique must be
combined with the stabilization techniques already considered – is also an important topic of further
study.
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