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Abstract 15 

 16 

Oscillations in flow occur under many different situations in natural porous media, due to 17 

tidal, daily or seasonal patterns. In this paper, we investigate how such oscillations in 18 

flow affect the transport of an initially sharp solute front, if the solute undergoes 19 

nonlinear sorption. By homogenization, we show that after many cycles, the transport 20 

converges to a zero convection, pure nonlinear diffusion problem. With numerical 21 

simulations, we show that this convergence may occur relatively fast (say 10 cycles). The 22 

implication of the diffusion like large time behaviour is that the transition zone continues 23 

to spread beyond the zone of convective oscillation.  24 

Introduction 25 

 26 

The study of flow and transport in porous media, and in particular natural porous media 27 

such as soil and aquifers, has always been dominated by the assumption of steady state 28 

flow. This is quite understandable, as this assumption simplifies the mathematical 29 

analysis, and for many laboratory and field conditions, it is also quite justified. However, 30 

it cannot be ignored that for many other situations, flow is transient. 31 

A special case of transient conditions is that of oscillating flow, where flow in one 32 

direction is compensated by a complete reversal. For conditions studied in soil science 33 
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and other geosciences, for instance, seasonal fluctuations are often oscillatory. Examples 34 

are seasonal wetting and drying, although wetting and drying may occur at different time 35 

scales. Atmospheric forcing that has an oscillatory aspect is not limited to 36 

precipitation/evapotranspiration cycles, but also related with fluctuating air pressures 37 

(Neeper, 2001, Neeper and Stauffel, 2012, Jaeger and Kurzweg, 2003). In fact, 38 

oscillatory gas exchange for porous media has been investigated decades ago when 39 

Raats and Scotter (1968) considered flow that varies sinusoidally with time and 40 

investigated the dispersive behaviour due to such oscillations. The rate of dispersion can 41 

be described as a function of the Peclet number and the dimensionless amplitude of 42 

displacement, and this was experimentally tested by Scotter and Raats (1968) and 43 

elaborated numerically by Scotter and Raats (1969). 44 

More recent is the work on fluctuating interfaces in shallow groundwater by Eeman et al. 45 

(2013, 2016) and Cirkel et al. (2015) and daily oscillating flow at the plant root surface 46 

(Espeleta et al., 2016). Also at drinking water wells, oscillating conditions may be part of 47 

management (Pauw et al., 2016) to keep filters open (free of iron oxide deposits) by 48 

periodically extracting and discharging water. In underground energy or chemical 49 

storage, oscillating conditions may be important, for instance seasonal underground heat 50 

storage. In the context of tracer dispersion in estuaries, Kay (1997) investigated 51 

oscillating flows due to tidal reversals. 52 

Oscillating flow and transport has also been considered in chemical engineering. Though 53 

not considering a porous medium, Harvey et al. (2001), Reis et al. (2004) and Zheng and 54 

Mackley (2008) investigated mixing in a reactor with oscillatory flow. There is also earlier 55 

work for baffled tubes on mixing (Dickens et al., 1989) and heat transfer (Mackley and 56 

Stonestreet, 1995) for such flow conditions. Recently, Wang et al. (2017) considered 57 

mass transfer for a pulsed disc and doughnut (PDD) extraction column.  58 

As both Neeper and Stauffel (2012) and Cirkel et al. (2015) observed, the combination of 59 

periodic flow of the fluid  in the pores, on the long term  leads to diffusion type of 60 

behaviour, that can be captured with an effective diffusion coefficient. This was also the 61 

key point of Cirkel et al. (2015), who combined oscillating flow with cation transport, for 62 

the case of nonlinear (Gapon type) cation exchange.  63 

It is the scope of this paper, to reconsider the transport of a nonlinear adsorbing solute 64 

under an oscillating flow regime and to investigate the large time behaviour of the solute 65 

front and mixing behaviour. 66 

Problem statement 67 

We consider a flow field describing an oscillating pore water velocity V(t), with period T 68 

and mean <V>=0. This flow field transports a reactive solute through an infinitely long 69 

and one dimensional column. Solute transport is given by the well-known convection-70 

dispersion equation. In case of nonlinear adsorption of the solute subject to an initial step 71 

front, the transport is described by Convection-Dispersion-Reaction Problem (CDRP) 72 

 73 

𝜕𝜑(𝑢)

𝜕𝑡
+ 𝑉(𝑡)

𝜕𝑢

𝜕𝑥
= 𝐷(𝑡)

𝜕2𝑢

𝜕𝑥2     𝑥 ∈ ℝ,   𝑡 > 0,       (1) 74 

𝑢(𝑥, 0) =
1      𝑥 < 0 
0     𝑥 > 0

;         (2) 75 
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where u≥0 denotes a scaled solute concentration, the function 𝜑(𝑢) is strictly increasing 76 

and describes the accumulated solute on a volumetric basis, t is time, x is position, and D 77 

is the hydrodynamic dispersion coefficient (Bear, 1972). We assume sorption to be given 78 

by the Freundlich expression: 79 

𝜑(𝑢) = 𝑢 + 𝐴𝑢𝑝     𝐴 > 0,   0 < 𝑝 < 1.       (3) 80 

Further, we ignore molecular diffusion, hence 81 

𝐷(𝑡) = 𝛼|𝑉(𝑡)|  ,          (4) 82 

with 𝛼 > 0 denoting the dispersivity. We rewrite (1) as 83 

1

|𝑉(𝑡)|

𝜕𝜑(𝑢)

𝜕𝑡
+ 𝑃(𝑡)

𝜕𝑢

𝜕𝑥
= 𝛼

𝜕2𝑢

𝜕𝑥2,        (5) 84 

where 85 

𝑃(𝑡) =
1      𝑖𝑛 {𝑉 > 0},
−1    𝑖𝑛 {𝑉 < 0}.

         (6) 86 

Next, we introduce as new time scale  87 

𝜏 = ∫ |𝑉(𝑧)|𝑑𝑧
𝑡

0
,          (7) 88 

which is the total travelled distance of the fluid particle in time t. With 𝑣(𝑥, 𝜏) = 𝑣(𝑥, 𝜏(𝑡)) =89 

𝑢(𝑥, 𝑡) and 𝑃∗(𝜏) = 𝑃∗(𝜏(𝑡)) = 𝑃(𝑡), we find the transformed problem 90 

 91 

𝜕𝜑(𝑣)

𝜕𝜏
+ 𝑃∗(𝜏)

𝜕𝑣

𝜕𝑥
= 𝛼

𝜕2𝑣

𝜕𝑥2          𝑥 ∈ ℝ,    𝜏 > 0 ,      (8) 92 

𝑣(𝑥, 0) =
1     𝑥 < 0,
0     𝑥 > 0.

         (9) 93 

 94 

Figure 1: Illustration of the velocity as a function of time (Fig. 1a) and the function 𝑃(𝑡), 95 

with 𝑇 a characteristic time. 96 

Large time behaviour 97 

 98 
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We are interested in the large time behaviour of the solute front, i.e., the solute 99 

distribution in the column after many oscillations. Therefore, we introduce a second 100 

scaling 101 

𝑠 ∶=
𝜏

𝜏𝑜𝑏𝑠
     and    𝑦 ∶=

𝑥

√𝛼𝜏𝑜𝑏𝑠
,        (10) 102 

where 103 

𝜏𝑜𝑏𝑠 = 𝑁𝑇∗,    with    𝑇∗ = ∫ |𝑉(𝑧)|𝑑𝑧
𝑇

0
),       (11) 104 

is the travelled distance at the moment of observation. Note that 𝜏𝑜𝑏𝑠 corresponds with 105 

𝑇𝑜𝑏𝑠 = 𝑁𝑇. We also introduce the parameter 106 

𝜀 =
1

𝑁
,           (12) 107 

which is small after many periods (N). Setting now 𝑤(𝑦, 𝑠) = 𝑤 (
𝑥

√𝛼𝜏𝑜𝑏𝑠
,

𝜏

𝜏𝑜𝑏𝑠
) = 𝑣(𝑥, 𝜏) and 108 

𝑃̃(𝑧) ∶= √
𝑇∗

𝛼
𝑃∗(𝑧𝑇∗),         (13) 109 

we obtain the scaled (dimensionless) initial value problem (IVP) 110 

     

𝜕𝜑(𝑤)

𝜕𝑠
+ 𝜀−

1

2𝑃̃ (
𝑠

𝜀
)

𝜕𝑤

𝜕𝑦
=

𝜕2𝑤

𝜕𝑦2           𝑦 ∈ ℝ,      𝑠 > 0,

𝑤(𝑦, 0) =   
1       𝑦 < 0,
0       𝑦 > 0.

                                                    
     (14) 111 

We investigate the solution of problem (IVP) for many oscillations (N→∞) or small 𝜀 (𝜀↓0), 112 

while considering s=O(1) (or 𝜏 =O(𝜏𝑜𝑏𝑠). Before studying the nonlinear (reactive) case, it is 113 

instructive to first consider the linear (non-reactive) one. 114 

 115 

Figure 2: Illustration of the oscillation function 𝑃̃(𝑧), as defined in (13). 116 

 117 

 118 
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Linear (non-reactive) case 119 

 120 

For the linear case, 𝜑(𝑤) = 𝑤 and the solution is well-known in terms of the 121 

complementary error function (Appendix A).  122 

Since 𝑃̃ is a 1-periodic function, we may consider 𝑧 =
𝑠

𝜀
∈ (0,1) and consider for any 𝑠 > 0,123 

𝑧 =
𝑠

𝜀
𝑚𝑜𝑑1. Introducing the function 124 

𝑔(𝑧) = ∫ 𝑃̃(𝜉)𝑑𝜉
𝑧

0
         (15) 125 

the solution of the linear version of (14) can be written as 126 

𝑤𝜀(𝑦, 𝑠) =
1

2
𝑒𝑟𝑓𝑐 (

𝑦

2√𝑠
−

𝜀1/2

2√𝑠
𝑔(𝑧)).       (16) 127 

Setting  128 

𝑤0(𝑦, 𝑠) =
1

2
𝑒𝑟𝑓𝑐 (

𝑦

2√𝑠
),         (17) 129 

We observe that 130 

𝑤𝜀(𝑦, 𝑠) = 𝑤0 ((𝑦 − 𝜀1/2𝑔(𝑧)) , 𝑠),        (18) 131 

which can be expanded in terms of 𝜀 to give 132 

𝑤𝜀(𝑦, 𝑠) = 𝑤0(𝑦, 𝑠) − 𝜀1/2𝑔(𝑧)
𝜕𝑤0

𝜕𝑦
+

1

2
𝜀𝑔2(𝑧)

𝜕2𝑤0

𝜕𝑦2 + 𝑂(𝜀3/2).    (19) 133 

Note that expansion (19) is of the form 134 

𝑤𝜀(𝑦, 𝑠) = 𝑤0(𝑦, 𝑠) + 𝜀1/2𝑤1(𝑦, 𝑠, 𝑧) + 𝜀𝑤2(𝑦, 𝑠, 𝑧) + ⋯,     (20) 135 

where the functions 𝑤𝑖 are 1-periodic with respect to 𝑧. It is a two scale expansion, i.e., 136 

in 𝜀 and in 𝑧 =
𝑠

𝜀
│𝑚𝑜𝑑1. Such expansions are well-known in the theory of homogenization, 137 

see for instance Cioranescu and Donato (1999) and Hornung (1997). 138 

 139 

Figure 3: Illustration of the oscillatory function 𝑔(𝑧), defined in (15). 140 

What is the interpretation of (16) in terms of the original variables 𝑥, 𝑡, and 𝑢? The 141 

backwards transformation gives 142 

𝑢(𝑥, 𝑡) =
1

2
𝑒𝑟𝑓𝑐 (

𝑥

2√𝛼𝜏(𝑡)
−

1

2
√

𝑇∗

𝜏(𝑡)
𝑔 (

𝜏(𝑡)

𝑇∗ )) .      (21) 143 
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Hence, at each 𝑡 = 𝑁𝑇, we have 144 

𝜏(𝑁𝑇) = 𝑁𝑇∗ = 𝑁 ∫ |𝑉(ξ)|𝑑ξ = 〈|𝑉|〉𝑁𝑇
𝑇

0
,        (22) 145 

𝑔 (
𝜏(𝑁𝑇)

𝑇∗ = 𝑁) = 0 ,         (23) 146 

and thus 147 

𝑢(𝑥, 𝑁𝑇) =
1

2
𝑒𝑟𝑓𝑐 (

𝑥

2√𝐷𝑒𝑓𝑓𝑁𝑇
),        (24) 148 

where 𝐷𝑒𝑓𝑓 = 𝛼〈|𝑉|〉.         (25) 149 

This holds exactly after each period (for all 𝑁 ≥ 1. It holds approximately for 𝑡 ≠ 𝑁𝑇, up to 150 

order √𝜀 = √
1

𝑁
. Note that expression (24) coincides with the solution of the linear diffusion 151 

problem: 152 

(LD)       

𝜕𝑢

𝜕𝑡
= 𝐷𝑒𝑓𝑓

𝜕2𝑢

𝜕𝑥2      𝑥 ∈ ℝ, 𝑡 > 0,

𝑢(𝑥, 0) =
1    𝑥 < 0,
0    𝑥 > 0.

       (26) 153 

at 𝑡 = 𝑁𝑇. Thus, at 𝑡 = 𝑁𝑇, the solution of (LD) coincides with the solution of the linear 154 

convection dispersion problem 155 

𝜕𝑢

𝜕𝑡
+ 𝑉(𝑡)

𝜕𝑢

𝜕𝑥
= 𝐷(𝑡)

𝜕2𝑢

𝜕𝑥2         𝑥 ∈ ℝ, 𝑡 > 0,

𝑢(𝑥, 0) =
1    𝑥 < 0
0    𝑥 > 0.

        (27) 156 

Nonlinear reactive case 157 

 158 

Based on the linear case, we apply a two scale expansion to the nonlinear equation (14), 159 

by substituting  160 

𝑤𝜀(𝑦, 𝑠) = 𝑤0(𝑦, 𝑠, 𝑧) + 𝜀1/2𝑤1(𝑦, 𝑠, 𝑧) + 𝜀𝑤2(𝑦, 𝑠, 𝑧) + ⋯     (28) 161 

where (𝑦, 𝑠) ∈ 𝐻 = {(𝑦, 𝑠): 𝑦 ∈ ℝ, 𝑠 > 0} and 𝑧 ∈ (0,1). The functions 𝑤𝑖 are constructed in such 162 

a way that they are 1-periodic in 𝑧 and that for each 𝜀 > 0 163 

 164 

lim
𝑠↓0

𝑤𝜀(𝑦, 𝑠) =     
1       𝑦 < 0,
0       𝑦 > 0.

        (29) 165 

 166 

Because 𝑧 =
𝑠

𝜀
, we have the following rule for differentiating with respect to s in the 167 

expansion: 168 

𝜕

𝜕𝑠
→

𝜕

𝜕𝑠
+

1

𝜀

𝜕

𝜕𝑧
.          (30) 169 

In expansion (B1) from Appendix B, we collect terms of the same order of 𝜀.  170 
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At the order of 𝜀−1 we have 171 

𝜕

𝜕𝑧
𝜑(𝑤0) = 0, with (𝑦, 𝑠) ∈ 𝐻, 𝑧 ∈ (0,1),       (31) 172 

which implies  173 

𝑤0 = 𝑤0(𝑦, 𝑠)          (32) 174 

only, as in the linear case. As we see later, 𝑤0 is determined by higher order terms in the 175 

expansion. At the order 𝜀−1/2 we find the equation 176 

𝜕

𝜕𝑧
(𝜑′(𝑤0)𝑤1) + 𝑃̃(𝑧)

𝜕𝑤0

𝜕𝑦
= 0     with (𝑦, 𝑠) ∈ 𝐻, 𝑧 ∈ (0,1).    (33) 177 

Using (32), we have 178 

𝜕𝑤1

𝜕𝑧
= −𝑃̃(𝑧)

1

𝜑′(𝑤0)

𝜕𝑤0

𝜕𝑦
         (34) 179 

and since ∫ 𝑃 ̃(𝑧)𝑑𝑧 = 0
1

0
, (34) implies 1-periodicity of 𝑤1 (as then, the left hand site when 180 

integrated is zero, implying 𝑤1(𝑦, 𝑠, 0) = 𝑤1(𝑦, 𝑠, 1)). 181 

We will construct 𝑤0 to satisfy the initial condition in (14). Now, choosing the functions 182 

𝑤𝑘, such that 183 

 𝑤𝑘 = 0     for 𝑧 = 0,     (𝑦, 𝑠) ∈ H   and  𝑘 = 1,2, …,     (35) 184 

ensures that expansion (28) satisfies initial condition (29). The unique 1-periodic solution 185 

of (34) and (35) is given by 186 

𝑤1(𝑦, 𝑠, 𝑧) = −𝑔(𝑧)
1

𝜑′(𝑤0)

𝜕𝑤0

𝜕𝑦
.        (36) 187 

Note that this expression is identical to the second term in (19) for the linear case where 188 

𝜑(𝑤0) = 𝑤0. 189 

At the order 𝜀0, collection of the terms in the expansion (B1) of Appendix B leads to the 190 

equation 191 

𝜕

𝜕𝑧
{𝜑′(𝑤0)𝑤2 +

1

2
𝜑′′(𝑤0)(𝑤1)2 −

1

2
𝑔2 𝜕

𝜕𝑦
(

𝜕𝑤0/𝜕𝑦

𝜑′(𝑤0)
)} =

𝜕2𝑤0

𝜕𝑦2 −
𝜕𝜑(𝑤0)

𝜕𝑠
.    (37) 192 

This is an equation for 𝑤2. The function 𝑤2, or the total bracketed term in (37), is 1-193 

periodic in 𝑧 if and only if 194 

𝜕𝜑(𝑤0)

𝜕𝑠
=

𝜕2𝑤0

𝜕𝑦2      in H.         (38a) 195 

This nonlinear diffusion equation is solved subject to the initial condition 196 

𝑤0(𝑦, 0) =
1       𝑦 < 0,
0       𝑦 > 0.

         (38b) 197 

The solution of (38) is a self-similar solution of the form 198 

𝑤0(𝑦, 𝑠) = 𝑓(𝜂),       𝜂 = 𝑦/√𝑠,         (39) 199 

where 𝑓 satisfies the boundary value problem 200 
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1

2
𝜂

𝑑𝜑(𝑓)

𝑑𝜂
+

𝑑2𝑓

𝑑𝜂2 = 0         𝑓𝑜𝑟 − ∞ < 𝜂 < ∞,

𝑓(−∞) = 1,       𝑓(+∞) = 0.
       (39) 201 

Problems of this kind received considerable attention in the mathematics literature. Some 202 

details and references are given in Appendix C. 203 

 204 

Figure 4: Sketch of solution of Problem (39). The solution has a front at 𝜂 = 𝐿 > 0 and 205 

𝑓(𝜂) = 0 for all 𝜂 ≥ 𝐿 in Figure 4a, and behaviour of corresponding 𝑤0(𝑦, 𝑠) = 𝑓 (
𝑦

√𝑠
) in the 206 

(𝑦, 𝑠)-plane in Figure 4b. 207 

Using (38a) and (36) in (37) and applying 𝑤2 = 0 for 𝑧 = 0 and (𝑦, 𝑠) ∈H, we find (see 208 

Appendix B for the details) 209 

𝑤2 =
1

2
𝑔2 {

1

(𝜑′(𝑤0))
2

𝜕2𝑤0

𝜕𝑦2 − 2
𝜑′′(𝑤0)

(𝜑′(𝑤0))
3 (

𝜕𝑤0

𝜕𝑦
)

2

}.      (40) 210 

For the linear case (𝜑(𝑤0) = 𝑤0), this is identical to the third term of (19). 211 

Continuing the expansion would result in the fourth term 𝜀3/2𝑤3. However, here the 212 

procedure breaks down in the sense that it is not possible to find a function 𝑤3 that is 1-213 

periodic in 𝑧. This is explained in Appendix B. Therefore, we stop the expansion at order 214 

𝜀3/2, and consider the approximation  215 

𝑤𝜀(𝑦, 𝑠) = 𝑤0(𝑦, 𝑠) + 𝜀1/2𝑤1(𝑦, 𝑠, 𝑧) + 𝜀𝑤2(𝑦, 𝑠, 𝑧)      (41) 216 

where (𝑦, 𝑠) ∈ H and 𝑧 =
𝑠

𝜀
│𝑚𝑜𝑑1. 217 

This expression satisfies the initial condition and approximates the solution up to O(𝜀3/2). 218 

Since 𝑤1 = 𝑤2 = 0 when 𝑧 = 0,1 we have in terms of the original variables 𝑥, 𝑡, and 𝑢 219 

𝑢(𝑥, 𝑁𝑇) = 𝑓 (
𝑥

√𝐷𝑒𝑓𝑓𝑁𝑇
) + O(𝜀3/2),       (42) 220 

where 𝑓 is the solution of the boundary value problem (39). When 𝑡 ≠ 𝑁𝑇, the presence of 221 

𝑤1 and 𝑤2 gives 222 

𝑢(𝑥, 𝑡) = 𝑓 (
𝑥

√𝐷𝑒𝑓𝑓𝑁𝑇
) + O(𝜀1/2).        (43) 223 

 224 

It is of interest to investigate the behaviour of the functions 𝑤1 and 𝑤2 near the front 𝑦 =225 

𝐿√𝑠 of the lowest order approximation 𝑤0.  Since 𝑤1 and 𝑤2 are expressed in terms of 𝑤0, 226 

and thus in terms of 𝑓, we need to consider the behaviour of 𝑓( 𝜂) near 𝜂 = 𝐿.  227 

In Appendix D we show, by integrating (39), that 228 
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𝑓(𝜂)~𝐶(𝐿 − 𝜂)
1

1−𝑝 near 𝜂 = 𝐿,       (44) 229 

where 𝐶 is a positive constant given by expression (D4). 230 

Using (44) in expressions (36) and (40), it follows that (see again Appendix D) 231 

𝑤1(𝑦, 𝑥, 𝑧)~𝑔(𝑧)
𝐶

√𝑠
(𝐿 −

𝑦

√𝑠
)

1

1−𝑝
        (45) 232 

and 233 

𝑤2(𝑦, 𝑥, 𝑧)~(𝑔(𝑧))2 𝐶

𝑠
(𝐿 −

𝑦

√𝑠
)

1

1−𝑝
        (46) 234 

for 𝑠 > 0 and 𝑦 near 𝐿√𝑠. Here 𝐶 is a generic positive constant. 235 

Hence, all terms in approximation (41) vanish in a similar way near the front 𝑦 = 𝐿√𝑠 and 236 

𝑤1 and 𝑤2 can be extended by 𝑤1 = 𝑤2 = 0 beyond 𝑦 = √𝑠 in a continuous way. With these 237 

extensions, the approximation truly holds for (𝑦, 𝑠) ∈ H. 238 

Physically, this result means that the front of the concentration profile with oscillatory 239 

velocity (i.e., with convection and dispersion/diffusion), merges with the front of the 240 

nonlinear diffusion equation without flow, at least up to O(𝜀3/2). This was also suggested 241 

by Cirkel et al. (2015). 242 

Numerical approximation and results 243 

 244 

To ascertain that the concentration fronts with oscillatory velocity converge towards that 245 

in the absence of convection, but with adjusted hydrodynamic dispersion coefficient, we 246 

simulated the solute transport. The development of the concentration front at a depth of 247 

2 m, that starts as a Heavyside step concentration distribution at time t=0, was 248 

simulated using the software SWAP (Kroes et al., 2008). Whereas SWAP is intended for 249 

transient unsaturated flow and solute transport, we assumed that the 4 m long vertical 250 

soil column was water saturated and the flow rate was varied according to a sine 251 

function, alternately upward and downward. The discretization in depth was 0.002 m, the 252 

dispersivity is 𝛼=0.005 m and time steps are adjusted by SWAP. Flow rate maximum 253 

values were 1 mm/d and other conditions were kept the same as Cirkel et al. (2015). 254 

If we assume 255 

𝑉(𝑡) = 𝑉𝑚𝑎𝑥sin (2𝜋
𝑡

𝑇
) and redefine 𝜓 =

𝜑(𝑢)

𝐴
, 𝑡 ≔

𝑡

𝑇
, 𝑥 ≔

𝑥

𝐿
, 𝛿 ≔

𝛼𝑉𝑚𝑎𝑥𝑇

𝐴𝐿2 =
𝛼

𝐿
, if we choose a 256 

characteristic length 𝐿 =
𝑉𝑚𝑎𝑥𝑇

𝐴
=0.36/A. Then we obtain in a dimensionless setting 𝑃̃(𝑧) =257 

√
𝑇∗

𝛿
𝑃∗(𝑧𝑇∗) = √

𝑇∗

𝛿
𝑃(𝑧), which is 1 periodic. The amplitude can be determined for the chosen 258 

parameter values of the numerical approximations. For 𝑉𝑚𝑎𝑥 =0.36 m/y, 𝑇 =1 year, 259 

𝛼 =5x10-3 m, we obtain an amplitude of 𝑃̃ equal to √
𝑇∗

𝛿
= √

2

𝜋

𝛼

𝐿
 that varies in the 260 

simulations from about 2 to 5, depending on the used adsorption parameters. This 261 

amplitude is therefore O(1). 262 
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In Figure 5, we show the front as it develops with increasing number of flow cycles. 263 

Initially, the concentration front spreading is relatively fast, and it slows down as time 264 

proceeds. The case where convection is disregarded, except for accounting it in the 265 

calculation of an effective diffusion coefficient, similar as Scotter and Raats (1968) and 266 

Cirkel et al. (2015), appears to give results that increasingly converge with the oscillatory 267 

CDRP. 268 

If indeed a nonlinear diffusion situation is approached, the concentration fronts should 269 

approach a single one if plotted as a function of a similarity variable as given by 270 

𝜁 = [𝑥(𝑢) − 〈𝑥〉]/√𝑡         (47) 271 

Figure 5b shows that this is indeed the case as already after a short time (1 cycle) the 272 

CDRP results practically overlap with those for 10 or more cycles. The agreement 273 

between pure diffusion and (oscillating) CDRP is excellent for 𝑁 ≥ 10. 274 

 275 

 276 

 277 

Figure 5: Concentration fronts at different number of cycles as a function of position 278 

(depth; left) and similarity variable (ζ; right; as defined in eq. 47). Red: solution for 279 

CDRP, Blue: solution for zero convection and corrected dispersivity. Number of periods: 280 

N=0 (only left; no marker), N=1 (□), N= 10 (ο), 50 (Δ) and 100 (+). 281 

An initial condition for the upper half of the domain of zero concentration is quite artificial 282 

and seldom realistic. Therefore, a second experiment was simulated where the initial 283 

concentration is slightly larger than zero (0.001 in the units of Figures 5 and 6). In that 284 

case, the non-Lipschitz continuity due to an infinite adsorption equation derivative, hence 285 

an infinite retardation of zero concentrations (Van Der Zee, 1990) does not occur. As 286 

Figure 6 shows, in that case the concentration spreading is slightly larger than for Figure 287 

5, but changes are small for few cycles and diminish rapidly as the number N increases. 288 

 289 
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 290 

  291 

Figure 6: Concentration fronts as a function of position (left) and similarity variable (ζ, 292 

right) and for same times and markers as Figure 5, but for oscillating CDRP case initial 293 

concentration is 0.001 instead of 0 for position upward from -200 cm (orange). Blue lines 294 

and markers for the zero convection case and initial concentration of 0. 295 

For both cases of Figure 5 and 6, we observe convergence to a pure nonlinear diffusion 296 

situation. As was commented on, the initial condition of a Heaviside concentration step 297 

front leads to higher order terms that do not disappear. Therefore, the simulations were 298 

done again for the case that the initial condition follows a steep but smooth errorfunction. 299 

The resulting concentration fronts after 10 cycles were indistinguishable from those in 300 

Figures 5 (not shown). 301 

 302 

Conclusion   303 

 304 

In this paper, we analysed the long term behaviour of a solute front with oscillating flow, 305 

if that solute is subject to nonlinear (Freundlich) adsorption. Our mathematical analysis 306 

confirmed that the oscillating nonlinear convection-dispersion front converges to a 307 

nonlinear pure diffusion (i.e., zero convection) front, though with adjusted, enhanced 308 

dispersion coefficient according to Cirkel et al., (2015). This result supports conjectures 309 

made recently by Cirkel et al. (2015) and Neeper and Stauffer  (2012) of the long term 310 

dominance of the diffusion process. 311 

This result is of interest, as unidirectional flow (in the negative or positive directions for 312 

the current initial condition) would lead to either traveling wave (TW) or rarefaction wave 313 

(RW) behaviour (Van Duijn and Knabner, 1991, Van Der Zee, 1990). Both TW and RW 314 

behaviour essentially depend on convective transport. Although earlier a rapid 315 

convergence to a limiting analytical TW solution for unidirectional flow was observed 316 

(Bosma and Van Der Zee, 1993), this rate of convergence is apparently not fast enough 317 
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to compensate for the spreading during the RW regime (with the flow rate in the opposite 318 

direction). By itself, this is plausible, because the analytical TW solutions are limiting 319 

solutions (for 𝑡 → ∞) (Bolt, 1982, Van Duijn and Knabner, 1991). But we may also 320 

conclude, that at large times, dispersional spreading dominates the oscillating case.  321 

The oscillations for the present case were simplified to a sine function of flow velocity. 322 

Both Eeman et al. (2013) and Cirkel et al. (2015) also considered irregular fluctuations of 323 

flow velocity and direction, and this irregular behavior that is more in agreement with 324 

realistic situations could be captured well in the definition of the “effective diffusion 325 

coefficient”.  326 

The convergence of the oscillating case to pure diffusion implies that large time spreading 327 

occurs slower and slower, but does not stop. Accordingly, even if the fluctuations lead to 328 

a mean front that moves only over a small distance in the opposite directions, the 329 

concentration front at some time spreads over a much larger soil zone, than is involved 330 

in the fluctuations: front spreading continues unbounded.  331 

As, in essence, for two situations with different nonlinear sorption (Gapon and 332 

Freundlich; Cirkel et al., 2015 and this paper) similar conclusions can be made, it could 333 

well be that for other nonlinear biogeochemical interactions (e.g. Monod kinetics, Janssen 334 

et al., 2006)) our conclusions remain valid. In that case, this work becomes of more 335 

general interest than the very different situations that have already been elaborated in 336 

this paper and cited work, e.g. of Neeper and Stauffer (2012) and Scotter and Raats 337 

(1968, 1969). 338 
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Appendixes 349 

 350 

Appendix A: Solution linear case 351 

 352 

With 𝑒𝑟𝑓𝑐(𝜂) =
2

√𝜋
∫ 𝑒−𝑝2∞

𝜂
𝑑𝑝,  353 

the solution for the linear case is 354 

𝑤𝜀(𝑦, 𝑠) =
1

2
𝑒𝑟𝑓𝑐 (

𝑦

2√𝑠
−

𝜀
−

1
2 ∫ 𝑃̃(

𝜉

𝜀
)𝑑𝜉

𝑠
0

2√𝑠
).       (A1) 355 
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Note: 𝜀−1/2 ∫ 𝑃̃ (
𝜉

𝜀
) 𝑑𝜉 = 𝜀+1/2 ∫ 𝑃̃(𝜒)𝑑𝜒

𝑠/𝜀

0

𝑠

0
.  356 

Appendix B : Details of expansion 357 

In this appendix, we provide some details that were omitted in the main text. 358 

Substituting (28) into (14) leads to the expansion: 359 

(
𝜕

𝜕𝑠
+

1

𝜀

𝜕

𝜕𝑧
) {𝜑(𝑤0) + 𝜑′(𝑤0) (𝜀

1

2𝑤1 + 𝜀𝑤2 + 𝜀
3

2𝑤3 … ) +
1

2
𝜑′′(𝑤0) (𝜀

1

2𝑤1 + 𝜀𝑤2 + ⋯ )
2

+360 

1

3!
𝜑′′′(𝑤0)(𝜀1/2𝑤1 + ⋯ )

3
+ ⋯ } + 𝜀−1/2𝑃̃(𝑧)

𝜕

𝜕𝑦
(𝑤0 + 𝜀1/2𝑤1 + 𝜀𝑤2 + ⋯ ) =

𝜕2

𝜕𝑦2 (𝑤0 + 𝜀1/2𝑤1 + 𝜀𝑤2 … )361 

           (B1) 362 

Collection of terms at order 𝜀0, gives for 𝑤2: 363 

𝜕𝑤0

𝜕𝑠
+

𝜕

𝜕𝑧
(𝜑′(𝑤0)𝑤2 +

1

2
𝜑′′ (𝑤0)(𝑤1)2) + 𝑃̃(𝑧)

𝜕𝑤1

𝜕𝑦
=

𝜕2𝑤0

𝜕𝑦2      (B2) 364 

since 365 

𝑃̃(𝑧)
𝜕𝑤1

𝜕𝑦
= −𝑃̃(𝑧)𝑔(𝑧)

𝜕

𝜕𝑦
(

𝜕𝑤0

𝜕𝑦

𝜑′(𝑤0)
) = −

1

2

𝑑𝑔2

𝑑𝑧

𝜕

𝜕𝑦
(

𝜕𝑤0/𝜕𝑦

𝜑′(𝑤0)
)  366 

(B2) can be rewritten as (37).  367 

Using (38a) and (36) in (37) and applying 𝑤2 = 0 for 𝑧 = 0 and (𝑦, 𝑠) ∈H, we obtain: 368 

𝑤2 =
1

2
𝑔2 1

𝜑′(𝑤0)

𝜕

𝜕𝑦
(

𝜕𝑤0/𝜕𝑦

𝜑′(𝑤0)
) −

1

2

𝜑′′(𝑤0)

𝜑′(𝑤0)
(𝑤1)2 =

1

2
𝑔2 {

1

𝜑′(𝑤0)

𝜕

𝜕𝑦
(

𝜕𝑤0/𝜕𝑦

𝜑′(𝑤0)
) −

𝜑′′(𝑤0)

(𝜑′(𝑤0))
3 (

𝜕𝑤0

𝜕𝑦
)

2

} (B3) 369 

which leads to (40). 370 

A problem arises for 𝜀 of order 3 2⁄ . From the expansion (B1), we deduce for 𝑤3 371 

𝜕

𝜕𝑠
(𝜑′(𝑤0)𝑤1) +

𝜕

𝜕𝑧
{𝜑′(𝑤0)𝑤3 + 𝜑"(𝑤1)𝑤1𝑤2 +

1

3!
𝜑′′′(𝑤0)(𝑤1)3} + 𝑃̃(𝑧)

𝜕𝑤

𝜕𝑦

2
=

𝜕2𝑤1

𝜕𝑦2   (B4) 372 

Writing 𝑤2(𝑦, 𝑠, 𝑧) = (𝑔(𝑧))
2

𝜒(𝑦, 𝑠) we have  𝑃̂(𝑧)𝑤2 =
1

3

𝑑

𝑑𝑧
(𝑔(𝑧))3𝜒(𝑦, 𝑠). 373 

Hence, we get for (B4) 374 

𝜕

𝜕𝑧
{𝜑′(𝑤0)𝑤3 + 𝜑′′(𝑤0)𝑤1𝑤2 +

1

3!
𝜑′′′(𝑤0)(𝑤1)3 +

1

3
(𝑔(𝑧))3𝜒(𝑦, 𝑠)} =

𝜕2𝑤1

𝜕𝑦2 −
𝜕

𝜕𝑠
(𝜑′(𝑤0)𝑤1) (B5) 375 

note that 𝑤1, 𝑤2, and 𝑔 are 1-periodic in 𝑧. To solve (B5) for 𝑤3, being 1-periodic in 𝑧 as 376 

well, requires 377 

𝐶(𝑦, 𝑠) ≔ ∫ {
𝜕2𝑤1

𝜕𝑦2 −
𝜕

𝜕𝑠
(𝜑′(𝑤0)𝑤1)} 𝑑𝑧 = 0   ∀ (𝑦, 𝑠) ∈ H

1

0
.     (B6) 378 

However, with (36) and 〈𝑔〉 = ∫ 𝑔(𝑧)𝑑𝑧 > 0,
1

0
 we find 379 

1

〈𝑔〉
𝐶(𝑦, 𝑠) =

𝜕2𝑤0

𝜕𝑠𝜕𝑦
−

𝜕2

𝜕𝑦2 (
1

𝜑′(𝑤0)

𝜕𝑤0

𝜕𝑦
) =

𝜕

𝜕𝑦
{

𝜕𝑤0

𝜕𝑠
−

1

𝜑′(𝑤0)

𝜕2𝑤0

𝜕𝑦2 +
𝜑"(𝑤0)

(𝜑′(𝑤0))
2 (

𝜕𝑤0

𝜕𝑦
)

2

}  380 

                    =
𝜕

𝜕𝑦
{

𝜑"(𝑤0)

(𝜑′(𝑤0))
2 (

𝜕𝑤0

𝜕𝑦
)

2

} = 0,       (B7) 381 
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only if 𝜑"(𝑤0) = 0, which is the linear or non-reactive case. 382 

Therefore, we stop the expansion at the order 𝜀
3

2⁄ . 383 

Appendix C: Solution problem (18) 384 

Setting ℎ = 𝜑(𝑓) and 𝑓 = 𝜑−1(ℎ) = 𝛬(ℎ) in (39) results in the transformed equation 385 

1

2
𝜂

𝑑ℎ

𝑑𝜂
+

𝑑2𝛬(ℎ)

𝑑𝜂2 = 0 for −∞ < 𝜂 < ∞,       (C1a) 386 

with 387 

ℎ(−∞) = 𝜑(1)        ℎ(+∞) = 𝜑(0) = 0         (C1b) 388 

Nonlinear diffusion problems as (C1) were studied by Atkinson and Peletier (1974) and 389 

Van Duijn and Peletier (1977) and Philip (1960). The function 390 

𝐷(ℎ) ∶= 𝛬′(ℎ)         ℎ ≥ 0          (C2) 391 

acts as a nonlinear diffusion function. It has been shown that fronts exist if 𝐷(ℎ) decays 392 

sufficiently fast to zero as ℎ ↓ 0. In particular if 393 

𝐷(ℎ)

ℎ
∈ 𝐿1(0, 𝛿) for some δ>0        (C3) 394 

then there exists 0 < 𝐿 < ∞ such that 395 

ℎ(𝜂) {      
> 0, strictly decreasing for 𝜂 < 𝐿

= 0 for 𝜂 ≥ 𝐿
       (C4) 396 

Similar behaviour holds for the original variable 𝑓(𝜂).This behaviour is sketched in Figure 397 

4.  398 

Example Freundlich adsorption gives 𝜑(𝑓) = 𝑓 + 𝐴𝑓𝑝, with 𝐴 > 0, 0 < 𝑝 < 1, 𝑓 ≥ 0. Thus for 399 

small 𝑓 (since 𝑝 < 1) we have approximately 𝜑(𝑓)~𝐴𝑓𝑝, and 𝛬(ℎ)~𝐴
−

1

𝑝ℎ
1

𝑝. 400 

Hence, 𝐷(ℎ)~
1

𝑝
𝐴

−
1

𝑝ℎ
1

𝑝
−1

 and 
𝐷(ℎ)

ℎ
~

1

𝑝
𝐴

−
1

𝑝ℎ
1

𝑝
−2

 401 

is integrable near ℎ = 0 since 𝑝 < 1. Therefore, Freundlich adsorption leads to fronts as in 402 

(C4). In terms of the original variables (𝑥 and 𝑡) the front is located at 
𝑥

√𝛼𝜏𝑜𝑏𝑠
= 𝐿√

𝜏

𝜏𝑜𝑏𝑠
  and 403 

with (7) we have 𝑥 = 𝐿√𝛼 ∫ |𝑉(𝜁)|𝑑𝜁
𝑡

0
. After 𝑁 periods we have 404 

𝑥 = 𝐿√𝛼 ∫ |𝑉(𝜁)|𝑑𝜁
𝑁𝑇

0
= 𝐿√𝐷𝑒𝑓𝑓. √𝑁𝑇       (C6) 405 

where 𝐷𝑒𝑓𝑓 = 𝛼〈|𝑉|〉 denotes the effective dispersion coefficient. 406 

If 𝑤0 has a front at 𝑦 = 𝐿√𝑠 in the sense that 𝑤0(𝑦, 𝑠) = 0 for 𝑠 > 0 and 𝑦 ≥ 𝐿√𝑠, then the 407 

same holds for the first approximation 𝑤1, by virtue of (36). In fact, this holds for 𝑤2 as 408 

well. 409 

 410 
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 411 

Appendix D: Behaviour near front 412 

 413 

Near the front, we have 𝛬(ℎ) = 𝐴
−

1

𝑝ℎ
1

𝑝, giving for h the equation, see (C1a),  414 

1

2
𝜂ℎ + 𝐴

−
1

𝑝
𝑑2ℎ

1
𝑝

𝑑𝜂2 = 0         (D1) 415 

Integrating, this equation from 𝜂 < 𝐿 to 𝜂 = 𝐿, and using 
𝑑ℎ

1
𝑝

𝑑𝜂
(𝜂) → 0 as 𝜂 → 𝐿 (vanishing 416 

flux at the front), gives 417 

1

2
𝜂ℎ(𝜂) +

1

2
∫ ℎ(𝑠)𝑑𝑠 + 𝐴

−
1

𝑝
𝑑ℎ

1
𝑝

𝑑𝜂
(𝜂) = 0

𝐿

𝜂
. 418 

Dividing this equation by ℎ(𝜂) yields 419 

𝐴
1

1
𝑝

1−𝑝

𝑑ℎ
1
𝑝−1

𝑑𝜂
(𝜂) = −

1

2
𝜂 −

1

2

1

ℎ(𝜂)
∫ ℎ(𝑠)𝑑𝑠

𝐿

𝜂
.       (D2) 420 

Using the monotonicity of ℎ gives 421 

0 <
1

ℎ(𝜂)
∫ ℎ(𝑠)𝑑𝑠 < 𝐿 − 𝜂

𝐿

𝜂
. 422 

Applying this in (D2) leads to 423 

lim
𝜂→𝐿

ℎ
1

𝑝
−1

= −
𝐿

2
(1 − 𝑝)𝐴

1

𝑝’ 424 

In terms of 𝑓(𝜂) this implies 425 

𝑓(𝜂)~𝐶(𝐿 − 𝜂)
1

1−𝑝 near 𝜂 = 𝐿,       (D3) 426 

where 427 

𝐶 = (
1

2
(1 − 𝑝)𝐴)

1

1−𝑝
         (D4) 428 

For 𝑤1, see expression (36) and using 𝑤0 = 𝑓, we need to investigate the behaviour of  429 

1

𝜑′(𝑓)

1

√𝑠

𝑑𝑓

𝑑𝜂
 near 𝜂 = 𝐿,        (D5) 430 

and for 𝑤2, see expression (40), the behaviour of  431 

1

(𝜑′(𝑓)2

1

𝑠

𝑑2𝑓

𝑑𝜂2 − 2
𝜑"(𝑓)

(𝜑′(𝑓))2

1

𝑠
(

𝑑𝑓

𝑑𝜂
)

2

 near 𝜂 = 𝐿.      (D6) 432 

Using 𝜑(𝑓) = 𝐴𝑓𝑝, we have, using (D3), 433 

𝜑′(𝑓) = 𝐴𝑝𝑓𝑝−1~𝐶(𝐿 − 𝜂)−1,         (D7) 434 

𝜑"(𝑓) = 𝐴𝑝(𝑝 − 1)𝑓𝑝−2~𝐶(𝐿 − 𝜂)
𝑝−2

1−𝑝,       (D8) 435 
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near 𝜂 = 𝐿. Here, and below, 𝐶 > 0 is a generic constant that we do not explicit any 436 

further. 437 

Using (D3) and the equation for 𝑓 (or ℎ), it is possible to show that 438 

𝑑𝑓

𝑑𝜂
~𝐶(𝐿 − 𝜂)

𝑝

1−𝑝 and 
𝑑2𝑓

𝑑𝜂2 ~𝐶(𝐿 − 𝜂)
2𝑝−1

1−𝑝        (D9) 439 

near 𝜂 = 𝐿. 440 

Finally, we combine (D7)-(D9) in (D5) and (D6) to obtain approximations (45) and (46).  441 

 442 

 443 
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