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Abstract

The Richards equation is a mathematical model for unsaturated flow through porous
media. This paper considers an extension of the Richards equation, where non-equilibrium
effects like hysteresis and dynamic capillarity are incorporated in the relationship that relates
the water pressure and the saturation. The focus is on travelling wave solutions, for which
the existence is investigated first for the model including hysteresis and subsequently for
the model including dynamic capillarity effects. In particular, such solutions may have
non monotonic profiles, which are ruled out when considering standard, equilibrium type
models, but have been observed experimentally. The paper ends with numerical experiments
confirming the theoretical results.

1 Introduction

Unsaturated flow through porous media is encountered in many applications of societal and en-
gineering relevance. Examples in this sense are the groundwater flows, or the moisture dynamics
in building materials. A commonly used mathematical model for such kind of processes is the
Richards equation, which is obtained after inserting the Darcy law into the water mass balance
equation. The two main unknowns in this equation are the water saturation S (the fraction of
the pore space in a representative elementary volume that is occupied by water) and the water
pressure p. In standard porous media flow models, these two unknowns are related through the
strictly decreasing capillary pressure function Pc(·), namely p = −Pc(S), which is determined
experimentally. Different types of functions and parameterizations are discussed e.g. in [31],
the common assumption being that the dependence is obtained under special, equilibrium con-
ditions. More precisely, the experiments are carried out either for imbibition or for drainage
and not when these processes occur alternatively, and during an entire imbibition or drainage
cycle each measurement has been done only after water stops redistributing inside the pores of
the elementary volumes. Such models will therefore be called in what follows “equilibrium type
models”.

In realistic applications, neither of these conditions are met. First, experiments reported
e.g. in [15, 29] have revealed the hysteretic nature of the pressure-saturation relationship. More
precisely, it was observed that the functions Pc determined during infiltration and drainage
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are different. This motivated an extremely rich literature on mathematical models describing
hysteresis. The play-type hysteresis model assumes a switch between imbibition and drainage
capillary pressure-saturation curves whenever the saturation changes from increasing in time
to decreasing in time or vice-versa. A mathematical formulation of this is given in [3], and
the switch happens along vertical scanning curves. This poses nontrivial issues when analysing
the resulting models and their numerical discretisations, which can be resolved by approximat-
ing the vertical scanning curves by monotone and non-vertical ones. In this sense, commonly
used is the Lenhard-Parker model [33], where the scanning curves are rescaled versions of some
predefined curves. A simplified version of it is proposed in [10], where the scanning curves
are oblique lines. Also extension of play-type hysteresis model incorporating the non-vertical
scanning curves has been proposed in [48]. Other hysteresis models build on concepts like per-
colating/nonpercolating phases [20, 24], or interfacial area based models [30, 35]. An overview
of hysteresis models can be found in [51], whereas details on the numerical approximation of
hysteresis in porous media models are given in [32]. In the present paper we consider the play-
type hysteresis model for the pressure-saturation dependence but it is interesting to note that
hysteresis can also be present in the relative permeability curve [34]. However, in the latter case
this effect is less important in comparison to the former [15].

Second, when letting the water infiltrate in a homogeneous medium, experiments have re-
vealed profiles that are conflicting with the profiles of the solutions to the equilibrium type
models. For example, if the injection rates at the inflow are high enough, the obtained satu-
ration profiles are non-monotone as the values at some locations inside the column are higher
than at the inflow boundary (the so-called overshoot phenomenon, see [18]). In particular, the
experiments in [7] show that although the saturation at some certain location is decreasing in
time, the water pressure is non-monotone and exhibits a peak at moments when the saturation
changes rapidly. This pleads for the inclusion of dynamic effects in the pressure-saturation
relationship, as suggested in [22].

In mathematical terms, models like those mentioned above are evolution equations of pseudo-
parabolic type, or involve differential inclusions. Such models will be called below ”non-
equilibrium type models”. In this paper, we investigate how the solution profiles for unsaturated
flow through a long, homogeneous porous column are affected by such non-equilibrium effects.
The analysis is based on travelling waves (TW), allowing to reduce the model first to a non-
linear ordinary differential equation, and then to a dynamical system. This provides insight in
the structure and behaviour of the solutions, and in particular how the non-equilibrium regime
affects the profiles. The present analysis follows the ideas in [47], which studies the existence of
TW solutions for reactive flow and transport models in porous media. In [17] TW solutions are
analysed for nonlinear models that are similar to the Richards equation, but where higher order
effects are included inspired by the ones describing dynamic capillarity. The nonlinear functions
taken in [17] are of power-like type, in particular the flux function is convex. The existence of
TW solutions is analysed, and in particular it is shown that oscillations behind the infiltration
front may occur, depending on the magnitude of the dynamic effect. A similar analysis, but
for two-phase flow models implying convex-concave flux functions is carried out in [44, 46, 49].
Also related are the diffusive-dispersive equations appearing as models for the phase transition
dynamics, but in which the higher order terms are in terms of the spatial derivatives only [2, 16].
Though having a different motivation, the associated TW equation is similar to the one for the
dynamic capillarity models, in particular since both involve a non-convex nonlinearity in the
lower order terms. In this context, in [46] it is proved that the saturation profile may have over-
shoot in form of a plateau separated by two fronts (infiltration-drainage), similar to the ones
obtained in [18]. The dependence of the saturation value at such plateaus on the magnitude of
the dynamic effect is proved rigorously in [46], and non-standard entropy conditions are defined
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for the shock solutions of the limiting hyperbolic case when the capillary effects are neglected.
This analysis is extended to the case of degenerate models in [44, 49]. Due to the degeneracy in
the model, the saturation remains between the physically relevant values, but the TW solutions
may have discontinuous derivatives. The possibility of encountering non-monotonic TW profiles
for various extensions of the Richards equation, including dynamic capillarity models, is evi-
denced numerically in [19, 21]. Finally, we mention [52] for a numerical study of the saturation
and capillary pressure profiles for several of the hysteresis concepts discussed above, combined
with dynamic capillarity.

The present analysis consists of three parts. First the existence of TW solutions is anal-
ysed for the models involving hysteresis. The TW profiles are obtained by regularising the
multi-valued function involved in the hysteretic term. In particular, we analyse the orbits as-
sociated with the TW solution in the saturation-pressure plane. We prove that in the initial
and the final stages these orbits follow scanning curves that become vertical when the regu-
larisation parameter vanishes, and in between they follow the corresponding primary curves
(imbibition/drainage).

Next, the case where dynamic effects are present in the pressure-saturation relationship
is discussed. The existence of TW solutions is obtained and criteria ensuring their non-
monotonicity are provided. These include also situations where full-saturation is achieved.

In the last part we discuss a numerical scheme for approximating the solution of the non-
linear, pseudo-parabolic partial differential equations modelling the processes described above.
The scheme is implicit, so at each time step one has to solve a nonlinear problem. In this context
we propose an iterative method which is unconditionally convergent. Finally, numerical results
validating the theoretical findings are provided. As will be seen below, the numerical solutions
to the original model are reproducing nicely analytically predicted structures and properties of
the TW solutions.

2 Mathematical formulation

2.1 Basic equations

We consider the unsaturated water flow in a one-dimensional, homogeneous porous medium.
Let t and x denote the time and space variable respectively. Assuming that the medium is
vertical so that gravity effects are playing a role, a well accepted model for the flow is the
Richards equation [31],

φ
∂S

∂t
=

∂

∂x

[
κ
k(S)

µ
·
(
∂p

∂x
− ρg

)]
. (2.1)

The unknowns in the model are the water saturation S and the water pressure p. The relative
permeability k(·) is a given, positive and increasing function that characterizes the medium
and can be determined experimentally. The other quantities are parameters in the model and
are assumed positive and known: µ and ρ are the the water viscosity and density, g is the
gravitational acceleration, φ is the porosity of the medium, and κ its absolute permeability.

The model is completed by an equation describing the relation between p and S. For
standard models, this relation is algebraic,

−p = Pc(S),

where Pc(·) is a decreasing function. Its specific form is determined experimentally. As men-
tioned, the results available in the literature assume a local equilibrium and disregard the history
of the system.
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Here we consider the non-equilibrium model proposed in [3], which combines dynamic ef-
fects in the p-S relationship with a simple, play-type hysteresis model. For a mathematical
justification of the play-type hysteresis model, based on the pore scale analysis, we refer to [43].
Let pimb(·) and pdrn(·) be the primary imbibition and drainage capillary pressure curves [29]
respectively. In the absence of the dynamic effects one has

Pc(S) =

{
pimb(S) for ∂tS > 0 (infiltration),

pdrn(S) for ∂tS < 0 (drainage).
(2.2)

Combining this with the vertical scanning curves the closure relationship can be written in the
compact mathematical form

− p ∈ P+(S)− P−(S) · sign

(
∂S

∂t

)
, (2.3)

where sign(·) is the multi-valued function (the signum graph)

sign(u) =


1 for u > 0

[−1, 1] for u = 0

−1 for u < 0.

(2.4)

The functions P+, P− are defined as (also see Figure 1 for an example in the dimensionless
framework)

P+ =
1

2
(pdrn + pimb) , and P− =

1

2
(pdrn − pimb) . (2.5)

Regarding dynamic effects we refer to [22]. With τ being a damping parameter and f(·) a
damping function (both non-negative), the model combining hysteretic and dynamic effects in
the pressure-saturation relationship reads

− p ∈ P+(S)− P−(S) · sign

(
∂S

∂t

)
− τf(S)

∂S

∂t
. (2.6)

In [22], a thermodynamic justification of such models has been given. Also, homogenisation
techniques are employed in [8] for justifying the dynamic terms. For experimental studies
concerning the value of τ and the shape of the function f we refer to [7].

2.2 Scaling and assumptions

In what follows we assume that water infiltrates in a porous column under both capillary and
gravity effects. The column is assumed isotropic and homogeneous, implying that φ and κ are
constants. We also assume that the column is insulated laterally, so the flow will be essentially
one-dimensional, in the direction of the gravity. Since we consider here TW solutions, the
column is assumed infinite.

With σ being the air-water surface tension coefficient, we consider the reference quantities

p∗ = σ

√
φ

κ
, L∗ =

p∗

ρg
, T ∗ =

µφL∗

ρgκ
, τ∗ =

µL2φ

κ
, (2.7)

and apply the rescaling

x̃ =
x

L∗
, p̃ =

p

p∗
, t̃ =

t

T ∗
, τ̃ =

τ

τ∗
. (2.8)
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Figure 1: Dimensionless primary imbibition (pimb) and drainage (pdrn) capillary pressure curves
and their average (P+) as a function of saturation S. The curves are based on the van Genuchten
model [50] and the parameters are taken from experiments [53, p. 91].

Observe that reference value for pressure is inspired by the J-Leverett relationship, Pc(S) =

σ
√

φ
kJ(S) where J is decreasing (see, e.g. [45]), and the reference value for the damping

parameter τ∗ is consistent with [26]. Also, since the analysis below will involve infinite domains,
we have first specified a reference pressure and based on it a reference length has been defined.
Putting the scaled variables in (2.1) and (2.6) and disregarding the ˜ to simplify the notation
one obtains the dimensionless system

∂S

∂t
=

∂

∂x

[
k(S)

(
∂p

∂x
− 1

)]
, (2.9)

−p ∈ P+(S)− P−(S) · sign

(
∂S

∂t

)
− τf(S)

∂S

∂t
. (2.10)

Next we state the assumptions on the nonlinear functions involved in the model. They reflect
the experimental observations. Throughout this paper, the superscript ′ denotes differentiation
with respect to the argument of the function.

(A. 1) k ∈ C1([0, 1]), k′(S) > 0 for 0 < S ≤ 1, k(0) = 0, k(1) = 1 and k is strictly convex.

(A. 2) The damping parameter is positive, τ > 0. The damping function f ∈ C([0, 1)) and
f(S) > 0 for 0 < S < 1.

(A. 3) The capillary pressure functions pα, α ∈ {imb, drn} satisfy pα : (0, 1] → [0,∞), pα ∈
C1((0, 1]), pα(1) = 0, p′α(S) < 0 and pimb(S) < pdrn(S) for S ∈ (0, 1).

An immediate consequence is that the functions P±(·) defined in (2.5) are in C1((0, 1]),
satisfying P±(1) = 0 and P±(S) > 0 for all S ∈ (0, 1). Figure 1 displays an example of primary
drainage and imbibition curves and their average P+.

To analyse the effect of hysteresis, which is modelled by means of a multi-valued function,
we consider a regularisation approach. With ε > 0 being a small regularisation parameter, one
can approximate the sign function by Hε : R→ R satisfying the following

(A. 4) For each ε > 0, Hε is smooth and satisfies

Hε(−s) = −Hε(s) and 0 < H ′ε(s) ≤ H ′ε(0) =
1

ε
for all s ∈ R;
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and

lim
s→±∞

Hε(s) = ±1, lim
ε→0

Hε(s) =

{
−1 if s < 0

1 if s > 0.
(2.11)

Further, Hε depends smoothly and monotonically on ε: if ε1 > ε2 > 0 then |Hε1(s)| <
|Hε2(s)| for all s 6= 0.

When sign is replaced by Hε in (2.10), the regularised model for the pressure-saturation
relationship becomes

− p = P+(S)− P−(S)Hε

(
∂S

∂t

)
− τf(S)

∂S

∂t
. (2.12)

Such regularisation has been used in [39, 42] for proving the existence of weak solutions to such
models, and for developing appropriate numerical schemes.

One may wonder if the regularisation (2.12) has a physical interpretation. In the play-type
limit as ε → 0, a switch from drainage to imbibition is through a vertical scanning curve.
Whereas when considering the regularised model (2.12), scanning curves have a steep but finite
slope as observed in experiments [29].

Another motivation for considering regularised models can be found in [51], where the play-
type hysteresis is viewed as a ‘friction-controlled backslash’ process. This means that dissipative
forces, which are mostly continuous in porous media, are responsible for it. At the pore scale,
hysteresis occurs because of the difference in the advancing and receding contact angles of the
wetting phase, which is a continuous phenomenon and hence jump phenomena should not be
expected.

Hence ε can be seen as a physical parameter, or at least can be used to fit more realistic
Pc-S scanning curves. Having this in mind, in the subsequent discussions we will analyse first
the case ε > 0 and then the limiting case of ε → 0. Before doing so we mention that (2.9),
combined with the constitutive relationship (2.10) or its regularised counterpart (2.12), becomes
a nonlinear, pseudo-parabolic equation. In general, one cannot expect that solutions exist in a
classical sense. We refer to [5, 6, 12, 13, 14, 25, 28, 27, 41, 42, 43] for results concerning the
existence and uniqueness of weak solutions for hysteresis models, dynamic capillarity models,
or for models including both effects. In particular we refer to [41, 42, 13] where, as suggested
in [3, 4], (2.12) is used to express ∂tS as a function of S and p. We rely on the same idea for
the TW analysis below.

2.3 Travelling wave formulation

To simplify the analysis and to understand the profile of the solutions to the regularised math-
ematical model (2.9), (2.12) we look for TW solutions. We assume that the solutions have
profiles that do not change in time, but travel with a velocity c that will be determined later.
Specifically, we extend the domain (the porous medium) to the entire real axis R and assume
that the saturation and the pressure depend on the TW variable ζ = ct − x. Note that this
choice is the opposite of x− ct which is commonly used in literature. But our choice is conve-
nient for the analysis below. Moreover, for the ease of presentation, we introduce the negative
pressure u = −p. In groundwater terms u is called suction. In this paper, however, we still
refer to u as pressure. Thus we set

S(x, t) = S(ζ) and u(x, t) = u(ζ), with ζ = ct− x. (2.13)
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The wave velocity c ∈ R will be determined later. In terms of ζ, equations (2.9) and (2.12)
become

cS′ = (k(S)(−u′ + 1))′, (2.14)

u = P+(S)− P−(S)Hε(cS
′)− cτf(S)S′, (2.15)

where −∞ < ζ <∞. Replacing Hε by sign and “=” by “∈” we get the travelling wave system
corresponding to (2.9) and (2.10).

We consider the case where the saturation and the pressure admit horizontal asymptotes at
±∞, i.e.

lim
ζ→−∞

S(ζ) = SB, lim
ζ→∞

S(ζ) = ST , (2.16)

lim
ζ→−∞

u(ζ) = uB, lim
ζ→∞

u(ζ) = uT . (2.17)

for given saturations ST , SB satisfying 0 < SB < ST ≤ 1 and for given pressures uB and uT .
We restrict ourselves to the case SB < ST for two reasons:

(i) If a travelling wave exists with c > 0, then SB < ST describes a wetting (infiltration) front
moving from top to bottom through the porous column. This is precisely the physical
setting that we aim to describe.

(ii) The convexity of k implies that travelling waves can only exist if SB < ST . This follows
directly from the sign of u′ in the (S, u) phase plane.

Integrating (2.14) gives
cS +A = k(S)(−u′ + 1) in R, (2.18)

where A is a constant of integration. Using now (2.16) and (2.17) in (2.18) and (2.15) yields

lim
ζ→±∞

S′(ζ) = lim
ζ→±∞

u′(ζ) = 0.

Hence (2.15) implies

lim
ζ→−∞

u(ζ) = P+(SB) and lim
ζ→∞

u(ζ) = P+(ST ),

which provides a necessary condition for the existence of TW solutions. We have

Proposition 2.1. A necessary condition for the existence of TW solutions is that the compo-
nents in the left and right states are compatible, namely ui = P+(Si) (i ∈ {T,B}).

In what follows, this compatibility condition is always assumed.

Applying boundary conditions (2.16) and (2.17) to (2.18) we get

c =
k(ST )− k(SB)

ST − SB
, (2.19)

and u′ = G(S;SB, ST ), (2.20)

where

G(S;SB, ST ) = 1− c(S − SB) + k(SB)

k(S)
= 1− c(S − ST ) + k(ST )

k(S)
. (2.21)

The last equality uses the wave speed expression (2.19).
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In this paper we investigate the effect of hysteresis and dynamic capillarity separately. The
combined case will be considered in a future study.

From (2.16),(2.17) and Proposition 2.1 it follows that the points Ei = (Si, ui) with ui =
P+(Si) and i ∈ {T,B} are equilibria for the dynamical system (2.14),(2.15). Much of the TW
analysis will be in terms of orbits in the (S, u) plane, connecting EB and ET .

Clearly, the corresponding waves are translation invariant (invariant to shift in ζ). To fix
the orbit we impose the normalization

S(0) =
1

2
(SB + ST ) and S(ζ) <

1

2
(SB + ST ) for all ζ < 0. (2.22)

We will see later that the inequality in (2.22) is needed as S has oscillating behaviour near
ST when ET becomes a stable spiral sink. From now on, while discussing travelling waves or
orbits, we implicitly assume that (2.22) is satisfied.

3 Capillary hysteresis

Dropping the dynamic terms in (2.15) we have

u = P+(S)− P−(S)Hε(cS
′). (3.1)

For a given regularisation Hε satisfying (A.4) we introduce

Φε(r) =
1

c
H−1
ε (r) for − 1 < r < 1. (3.2)

Then Φε satisfies

Proposition 3.1. Φε : (−1, 1)→ R is a smooth, odd and increasing function satisfying Φ′ε(0) =
ε
c for all ε > 0. Also, given two regularisation parameters ε1,2 such that ε2 > ε1 > 0 one has
|Φε1(r)| < |Φε2(r)| for all r ∈ (−1, 1). Finally, limε→0 Φε(r) = 0 for all r ∈ (−1, 1).

The proof is straightforward and is omitted. Figure 2 shows a sketch of Φε for different values
of ε.

r

-1 0 1
-5

0

5

Φε1
, ε1 = 0.05

Φε2
, ε2 = 0.5

Φε

Figure 2: Sketch of Φε. The actual plots are for Φε(r) = εr√
1−r2

and for the indicated values of
ε.

Rewriting (3.1) in terms of Φε we obtain for S and u the dynamical system

S′ = Φε

(
P+(S)− u
P−(S)

)
, (3.3)

u′ = G(S;SB, ST ). (3.4)

We consider the cases ST = 1 and ST < 1 separately.
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3.1 The case ST = 1

Since −1 < Hε < 1, equation (3.1) implies for 0 < S < 1,

pimb(S) < u < pdrn(S) (3.5)

and so

− 1 <
P+(S)− u
P−(S)

< 1. (3.6)

The main result of this section is

Theorem 3.1. Let 0 < SB < ST = 1 and EB = (SB, P
+(SB)), ET = (1, 0).

(a) Let ε > 0 be fixed. The system (3.3)-(3.4) has a unique orbit (Sε, uε) connecting the points
EB and ET . Along the orbit S is increasing and u is decreasing. Consequently, for any
S ∈ (SB, 1) there exists a unique ζε(S) such that Sε(ζε(S)) = S. A similar result holds
for u ∈ (0, P+(SB)).

(b) The orbits (Sε, uε) are well ordered with respect to ε and do not intersect except at the
equilibrium points EB and ET . Specifically, if ε2 > ε1 > 0 and Sε1(ζ1) = Sε2(ζ2) = S for
some S ∈ (SB, 1) and ζ1,2 ∈ R, then uε2(ζ1) > uε1(ζ2).

(c) Let S ∈ (SB, 1] be fixed. For arbitrary ε > 0, let wε(S) := uε(ζε(S)). Then lim
ε→0

wε =

pimb(S), uniformly on compact subsets of (SB, 1].

The monotone behaviour of the orbits imply that the TW solutions are monotone in both
components. In particular, no overshoot occurs in either pressure or saturation. Moreover the
functions Sε : R → (SB, 1) and uε : R → (0, P+(SB)) are one to one. This is used in (c) of
Theorem 3.1: given S ∈ (SB, 1), there exists a unique ζε(S) ∈ R, where Sε(ζε(S)) = S, which
defines the corresponding pressure wε(S) = uε(ζε(S)). The function wε(S), with SB < S < 1
and arbitrary ε > 0, describes the orbits as a function of S. Observe that, the definition of ζε
and wε makes sense only if Sε is monotone. If Sε is not monotone globally, the functions ηε
and wε can still be defined but restricted to intervals where the monotonicity of the saturation
holds. This generalization will be used to describe the case ST < 1 and for the analysis of
dynamic capillarity case.

Differentiation of wε(S) with respect to S gives

w′ε(S) =
dwε
dS

(S) =
duε
dζ

(ζε)
dζε
dSε

=
G(S;SB, 1)

Φε

(
P+(S)− wε
P−(S)

) . (3.7)

To prove Theorem 3.1 we first need some intermediate results. We start with

Proposition 3.2. The region H− = {(S, u) : SB < S < 1 and pimb(S) < u < P+(S)} is
positive invariant for the dynamical system (3.3)-(3.4).

Proof. Since k(·) is a convex function it follows that G(S;SB, 1) < 0 for any S ∈ (SB, 1). Also
S′ε > 0 whenever pimb(S) < u < P+(S). Therefore any orbit (Sε, uε) will be monotone in both
components as long as it remains in H−, and the function wε introduced above is well defined.

Referring to Figure 3, since S′ε = 0 and u′ε < 0 along the graph of P+, the orbit cannot
leave H− through the upper boundary. The same holds for the vertical boundary S = SB, since
along it one has S′ε > 0. Finally, as the orbit approaches the primary imbibition curve pimb one
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has S′ε → +∞ and therefore
dwε
dS
→ 0. Since p′imb < 0, this implies that the orbit cannot leave

H− through the lower boundary as well. Hence H− is invariant.

u

S
0 ST = 1SB

H−

EB
pimb
pdrn
P+

Figure 3: The invariant set H− in the S-u plane. The arrows indicate direction of orbits with
ζ increasing.

The next proposition characterises the equilibrium point EB.

Proposition 3.3. EB is a saddle type equilibrium.

Proof. Linearizing (3.3)-(3.4) around any equilibrium point Ei = (Si, P
+(Si)) (i ∈ {B, T})

yields the characteristic equation

λ2 − Φ′ε(0)
P+′(Si)

P−(Si)
λ+ Φ′ε(0)

(k′(Si)− c)
k(Si)P−(Si)

= 0. (3.8)

Since k is convex one has k′(SB) < c < k′(1). Hence at EB the last term on the left is negative,
which proves the result.

Remark 3.1. Since Φ′ε(0) = ε
c the positive eigenvalue in 3.8 at EB, λ = λ+,B,ε, satisfies

λ+,B,ε =

√
C1

2ε2 + C2ε− C1ε = O(
√
ε), as ε→ 0

for appropriately chosen C1,2 > 0.

We now turn to the proof of Theorem 3.1.

Proof. (a) Consider the situation near the saddle at EB. A direct calculation shows that the
eigenvector corresponding to the unstable eigenvalue λ+,B,ε > 0 points into the region H− for
increasing S. Let (Sε, uε) be the unique orbit leaving EB in this direction. By the invariance of
H− and the sign of the right hand sides in (3.3),(3.4), the orbit remains in H− with increasing
Sε and decreasing uε. As ζ → +∞ it can only end up in the boundary point ET = (1, 0).

(b) Letting S → SB in (3.7) we obtain

w′ε(SB) =
P+′(SB)

2

(
1 +

√
1 +

4(c− k′(SB))P−(SB)

k(SB)Φ′ε(0)(P+′(SB))2

)
. (3.9)

Since Φ′ε(0) = ε
c , it follows that w′ε1(SB) < w′ε2(SB) < 0 for any 0 < ε1 < ε2. Using

wε1(SB) = wε2(SB) = P+(SB) we have wε1(S) < wε2(S) in a right neighbourhood of SB.
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Now suppose there exists S∗ ∈ (SB, 1) such that wε1(S∗) < wε2(S∗) for SB < S < S∗ and
wε2(S∗) = wε1(S∗). Then w′ε1(S∗) ≥ w′ε2(S∗). This contradicts (3.7) at S∗.

(c) At this point we know that for all ε > 0,

• wε(SB) = P+(SB), wε(1) = 0 and wε > pimb in (SB, 1).

• For any pair 0 < ε1 < ε2, wε1 < wε2 in (SB, 1).

As a consequence
lim
ε→0

wε(S) = w̄(S) for each SB ≤ S ≤ 1,

where w̄ : [SB, 1] → [0, P+(SB)] satisfies w̄(SB) = P+(SB), w̄(1) = 0 and w̄(S) ≥ pimb(S)
for SB < S < 1. Moreover w̄(S) is non-increasing in [SB, 1], which is inherited from the
monotonicity of wε in [SB, 1].

Now suppose there exists S0 ∈ (SB, 1) such that w̄(S0) > pimb(S0). Then there exists
δ > 0, δ small enough, so that S0 − δ > SB and wε(S) > wε(S0) ≥ w̄(S0) > pimb(S0 − δ) for
S ∈ (S0 − δ, S0). In this situation, all orbits pass through the region (see Figure 4)

R = {(S, u) : S0 − δ/2 < S < S0 and pimb(S0 − δ) < u < P+(S)}. (3.10)

In R we have
G(S;SB, ST ) < −C for some C > 0, (3.11)

and since R does not touch pimb,

m = sup
(S,u)∈R

(
P+(S)− u
P−(S)

)
, with 0 < m < 1.

Using this in (3.7) we find, using the monotonicity of Φε

−w′ε(S) ≥ C

Φε(m)
, (3.12)

for all ε > 0 and for S0 − δ
2 < S < S0. Integration from S = S0 − δ

2 to S = S0 gives

Cδ

2Φε(m)
≤ wε

(
S0 −

δ

2

)
− wε(S0) < P+(SB)− Pimb(S0).

Letting ε → 0 we reach a contradiction. Hence w̄(S) = pimb(S) for SB < S ≤ 1. By Dini’s
Theorem the convergence is uniform on any closed interval [SB + µ, 1] with µ > 0.

u

S

0 ST = 1
δ

SB S0

EB H−

R

pimb
pdrn
P+

(Sε, uε)

Figure 4: The saturation S0 and the region R
for ε > 0.

Passing the limit ε → 0 gives the TW solu-
tions that corresponds to the play-type hys-
teresis. In terms of saturation S = S(ζ) it
runs from S = SB as ζ → −∞ to S = ST = 1
as ζ →∞, while u = pimb(S). We make this
precise in the following corollary

Corollary 3.1. Let ζ∗ε ∈ R be such that
uε(ζ

∗
ε ) = pimb(SB) and let S∗ε = Sε(ζ

∗
ε ).

Then

lim
ε→0

S∗ε = SB and lim
ε→0

ζ∗ε = −∞.

Before giving the proof we observe that in view of the convergence result in Theorem 3.1 (c),
this corollary shows that for ε↘ 0 the orbits become vertical when approaching EB.
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Proof. Since the orbits (Sε, uε) are ordered, S∗ε decreases with ε. Moreover, by construction
S∗ε > SB. Hence lim

ε→0
S∗ε = S∗ exists. Assuming S∗ > SB leads to a contradiction as in the proof

of Theorem 3.1 (c). Thus S∗ = SB.
To prove the second statement we first write equation 3.3 in terms of ζε, ζε being defined in

Theorem 3.1 (a):
dζε
dS

(S) =
1

Φε

(
P+(S)− wε(S)

P−(S)

) . (3.13)

As S∗ε = S(ζ∗ε ) and Sε(0) = (SB + ST )/2, integrating (3.13) and using (3.7) we get

−ζ∗ε =

∫ Sε(0)

S∗ε

dS

Φε

(
P+(S)−wε(S)

P−(S)

) =

∫ Sε(0)

S∗ε

w′ε(S)

G(S;SB, 1)
dS.

Since S∗ε → SB, for any δ > 0 there exists a µ̄ = µ̄(δ) such that SB < S∗ε < SB + δ for all
0 < ε < µ̄(δ). Using G ∈ C1([SB, 1]) and MG = max{|G′(S)| : S ∈ [SB,

1
2(ST + SB)]} we

estimate

− ζ∗ε ≥
1

MG

∫ Sε(0)

S∗ε

−w′ε(S)

S − SB
dS ≥ 1

MG

∫ 1
2

(ST+SB)

SB+δ

−w′ε(S)

S − SB
dS =:

1

MG
hε. (3.14)

Evaluating hε gives

hε =
wε(SB + δ)

δ
−

2wε(
1
2(ST + SB))

(ST − SB)
−
∫ 1

2
(ST+SB)

SB+δ

wε(S)

(S − SB)2
dS.

Since wε converges uniformly in [SB + δ, 1
2(SB + ST )] and since pimb ∈ C1 we have

lim
ε→0

hε =
pimb(SB + δ)

δ
−

2pimb(
1
2(ST + SB))

ST − SB
−
∫ 1

2
(ST+SB)

SB+δ

pimb(S)

(S − SB)2
dS

=

∫ 1
2

(ST+SB)

SB+δ

−p′imb
(S − SB)

dS =: h0.

Therefore for any ν > 0, there exists a µ∗(ν) > 0 such that hε > h0 − ν for all ε ∈ (0, µ∗(ν)).
Thus for 0 < ε < min{µ̄(δ), µ∗(ν)}

−ζ∗ε ≥
1

MG
(h0 − ν) ≥ Mp

MG
ln

(
ST − SB

2δ

)
− ν

M G
, (3.15)

where Mp = min{−p′imb(S) : SB < S < 1
2(SB + ST )}. Since δ can be chosen arbitrarily small,

this concludes the proof.

3.2 The case ST < 1

We consider now the case when the top and bottom saturations satisfy 0 < SB < ST < 1. In
the analysis we use the region

H = {(S, u) : SB ≤ S ≤ 1, pimb(S) ≤ u ≤ pdrn(S)},
and its subregions (see Figure 5)

H1 = {(S, u) : SB ≤ S ≤ ST , pimb(S) ≤ u ≤ P+(S)},
H2 = {(S, u) : ST ≤ S ≤ 1, pimb(S) ≤ u ≤ P+(S)},
H3 = {(S, u) : ST ≤ S ≤ 1, P+(S) ≤ u ≤ pdrn(S)},
H4 = {(S, u) : SB ≤ S ≤ ST , P+(S) ≤ u ≤ pdrn(S)}.

We first analyse the case when ε > 0.

12



3.2.1 Properties for fixed ε > 0

The key properties of the orbits are stated in

Theorem 3.2. Let 0 < SB < ST < 1 and ε > 0. Then the following holds

(a) There exists a unique orbit (Sε, uε) satisfying (3.3),(3.4),(2.22) and connecting EB and
ET .

(b) There exists a εm > 0 such that ET is a stable spiral sink whenever 0 < ε < εm.

u

S
1SB S̄ST

EB

ET
H1 H2

H3

H4

pimb
pdrn
P+

u

S

0 1SB S̄ ST

EB

ET
H1

H2

H3

H4
pimb
pdrn
P+

Figure 5: The regions H1, H2, H3 and H4 for the cases ST < S̄ (left) and ST > S̄ (right) where
S̄ is defined as pdrn(S̄) = P+(SB). The arrows indicate direction of orbits with ζ increasing.

Proof. (a) Repeating the proof for the ST = 1 case, we observe that the equilibrium EB is a
saddle and all orbits leaving EB along the unstable direction and for increasing Sε enter the
region H− introduced in Proposition 3.2. Also, no orbit can leave the region H defined above
through the primary curves pimb(S) and pdrn(S). Now we let S̄ be such that pdrn(S̄) = P+(SB).
Then two cases can be identified, ST < S̄ and ST ≥ S̄.

The case ST < S̄: With respect to Figure 5, the orbit leaving EB for increasing Sε enters first
the region H1. Then there are four possibilities (see Figure 5)

1. The orbit goes through H2, H3, H4 and returns to EB.

2. The orbit goes throughH2, H3, H4 and leavesH4 through the segment (SB, uB), (SB, pdrn(SB)).

3. The orbit goes through H2, H3, H4 and then leaves H4 through the arc (S, P+(S)) between
EB and ET . This in turn gives rise to two possibilities:

A. The orbit moves around ET but does not approach it.

B. The orbit ends up in ET .

The case ST ≥ S̄: In this case, if the orbit enters from H3 to H4 at some ζ = ζ3-4, uε(ζ3-4) <
pdrn(ST ) < pdrn(S̄) = uB. But in H4, uε is decreasing, hence uε < uB for all arguments ζ > ζ3-4,
which rules out the first two possibilities (possibility 1 and 2) above.

To show that actually 3.B is the only possibility in both cases, we follow an argument from
[17], based on Divergence Theorem. We define the vector-valued function

F : H → R2, F(S, u) = (Φε(S, u),G(S)), (3.16)

and denote its components by FS and Fu respectively. A direct calculation gives

∇ · F =
Φ′ε

(P−)2
· (P+′P− − P+P−

′
+ uP−

′
),

13



where the arguments S and u are disregarded. Hence, for (S, u) ∈ H one has

∇ · F(S, u) <


Φ′ε

(P−)2
· (P+′P− − P+P−

′
+ P−

′
pimb) if P−

′
(S) < 0

Φ′ε
(P−)2

· (P+′P− − P+P−
′
+ P−

′
pdrn) if P−

′
(S) > 0

The last factor in the first inequality gives

1

4
(pdrn + pimb)

′(pdrn − pimb)−
1

4
(pdrn + pimb)(pdrn − pimb)′ +

pimb
2

(pdrn − pimb)′

=
1

4
(2pdrnp

′
imb − 2pimbp

′
imb) =

1

2
(pdrn − pimb)p′imb < 0

Similarly, in the second inequality one gets
1

2
(pdrn − pimb)p′drn < 0. Thus we have shown that

∇ · F(S, u) < 0 for all (S, u) ∈ H. (3.17)

We can now investigate the possibilities mentioned above. To rule out the first two possibilities

u

S
SB S̄ST

ΩEB

ET
H1 H2

H3

H4

pimb
pdrn
P+

(Sε, uε)

u

S
SB S̄ST

ΩEB

ET

T

H1 H2

H3

H4

pimb
pdrn
P+

(Sε, uε)

Figure 6: Possibility 1 (left) : orbit returning to EB after going through regions H1, H2, H3 and
H4. Possibility 2 (right) : orbit exiting region H4 through the segment (SB, uB), (SB, pdrn(SB)).

in the case ST < S̄ we define the domain Ω bounded by the closed orbit, or by the orbit and the
segment (SB, uB), (SB, pdrn(SB)) (see Figure 6). Let the orbit intersect the segment (SB, uB),
(SB, pdrn(SB)) at the point T . So for possibility 1, T is simply ET . By (3.17) one has

0 >

∫
Ω
∇ · F =

∫ T

EB

F · n̂+

∫ EB

T
F · n̂ = 0−

∫ EB

T
FS ,

with the last integral on the right appearing only in the second possibility listed above. Since
FS ≤ 0 in the region H\H−, this gives a contradiction.

Finally, to eliminate 3.A we observe that by the Poincaré-Bendixson Theorem, if the orbit
does not end up in ET then it must approach a limit cycle around ET . However, one can
use again the argument above, to show that limit cycles do not exist. So, the only possible
behaviour of the orbits is as stated in possibility 3.B. This is displayed in the left plot of Figure
7. Also this orbit is unique if condition (2.22) is taken into account as this clearly fixes ζ = 0.

(b) Having proved the existence of an orbit connecting EB and ET , showing that the orbit
forms a stable spiral around ET for small enough ε is a matter of calculation. Using the
properties of Φε, P

+ and the convexity of k in (3.8) it is easy to show that for small values of ε,
the eigenvalues corresponding to equilibrium point ET will be complex with negative real part.
This completes the proof.
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The left plot in Figure 7 shows the phase portrait in the S-u plane. In the right plot one has
orbit component S as function of −ζ, in the case when ET is a stable spiral. Note the usage of
−ζ = x− ct instead of ζ, which is because in the original problem (with x and t as independent
variables) the left state (x = −∞) corresponds to ST and right state (x = ∞) corresponds to
SB. This convention is used when comparing with numerical solutions to (2.9)-(2.12).

u

S
1SB ST

Lε Rε

EB

pimb
pdrn
P+

(Sε, uε)

−ζ

S

SB

ST

1
2(SB + ST )

Rε

0

Sε(−ζ)

Figure 7: (left) Orbit connecting the saddle point to the spiral sink ET , and (right) the profile
of S as a function of −ζ = x− ct. The results shown, are for ε < εm.

3.2.2 Properties for the limit case ε→ 0

Knowing now the structure of the orbits for fixed ε > 0, we study their behaviour as ε→ 0. In
certain aspects, the results obtained for ST = 1 and for ST < 1 are quite similar. The major
difference is in the fact that the orbits are not monotone anymore. Consequently, the function
wε introduced Theorem 3.1 can only be defined as long as Sε remains monotone. Clearly, when
starting from EB the monotonicity is lost for the first argument ζ where Sε(ζ) = ST . We define
ζTε as

ζTε = min{ζ ∈ R : Sε(ζ) = ST }. (3.18)

From now on we refer to the function wε as the one obtained for ζ ∈ (−∞, ζTε ]. With this, one
has

Proposition 3.4. (a) As long as S ≤ ST the orbits (Sε, uε) are well ordered with respect to
ε > 0, and do not intersect.

(b) For any S ∈ (SB, ST ], wε(S) → pimb(S) as ε → 0, uniformly on compact subsets of
(SB, ST ].

The proof is the same as for Theorem 3.1 and is therefore omitted here.
For the case ST = 1, Corollary 3.1 is stating the limit behaviour of the orbits when ε↘ 0.

The nature of the equilibrium EB remains unchanged when ST < 1. Therefore similar results
hold as before: if ζ∗ε ∈ R is such that uε(ζ

∗
ε ) = pimb(SB), for S∗ε = Sε(ζ

∗
ε ) one has

lim
ε→0

S∗ε = SB and lim
ε→0

ζ∗ε = −∞,

and the corresponding orbits become vertical when approaching EB.
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The situation changes for ET since the orbits (Sε, uε) form stable spirals for small ε. To
understand this behaviour we let ζ̄ε = min{ζ ∈ R : Sε(ζ) = ST } and define (see Figure 7 (left))

Rε = sup{Sε(ζ) : uε(ζ) = P+(Sε(ζ))} and Lε = inf{Sε(ζ) : uε(ζ) = P+(Sε(ζ)), ζ > ζ̄ε}.

The following statement is proved

Proposition 3.5. For ζ̄ε, Lε and Rε introduced above, one has

lim
ε→0

ζ̄ε =∞, lim
ε→0

Lε = ST and lim
ε→0

Rε = ST .

Proof. The proof for ζ̄ε is almost identical to the proof of Corollary 3.1. For the remaining part
we only consider Rε, the proof for Lε being similar.

Clearly, Rε ≥ ST . Assuming that a δ > 0 and a sequence εk → 0 exist such that Rεk > ST +δ
for all k ∈ N. Let

R =

{
(S, u) : ST +

δ

2
< S < ST + δ and pimb(ST ) ≤ u ≤ P+(S)

}
.

Clearly, all orbits pass through R. Letting

M = sup
(S,u)∈R

(
P+(S)− u
P−(S)

)

one has 0 ≤M < 1 and 0 ≤ Φε

(
P+(S)−u
P−(S)

)
< Φε(M) for all (S, u) ∈ R. From (3.7) and recalling

that k is convex, for any S ∈
(
ST + δ

2 , ST + δ
)

one has

w′εk(S) >
G(S;SB, ST )

Φεk(M)
>

(k(S)− k(ST ))− c(S − ST )

k(ST + δ) · Φεk(M)
.

Integrating the above over
(
ST + δ

2 , ST + δ
)

and using the properties of k, a constant C0 > 0
depending on δ but not on ε exists such that

wεk(ST + δ)− wεk
(
ST +

δ

2

)
>

C0

Φεk(M)
.

In the above, the difference on the left is bounded by P+(ST ) − pimb(ST + δ). However, by
Proposition 3.1, the ratio on the right goes to∞ when ε→ 0, which gives a contradiction. This
implies that Rε → ST for ε↘ 0.

Summarising we have for the behaviour of Sε(ζ) as ε→ 0

Proposition 3.6. The limit solution (S(ζ), pimb(S(ζ))) solves the following boundary value
problem

cS′ = [k(S)((pimb(S))′ + 1)], S(−∞) = SB, S(∞) = ST .

Proof. From (3.13) we get that

ζε(S) = −
∫ S

1
2

(SB+ST )

w′ε(S)

G(S)
dS. (3.19)
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Following the exact steps produced in Corollary 3.1, i.e. integrating by parts (3.19) and then
using limε→0wε(S) = pimb(S), one obtains that the limit

ζ0(S) = lim
ε→0

ζε(S),

exists. Moreover ζ0(S) depends continuously and strictly monotonically on S for all S ∈
(SB, ST ) and ζ0(SB) = −∞, ζ0(ST ) = ∞, the last one following from Proposition 3.5. This
means for any ζ ∈ R one can find a S = ζ−1

0 (ζ). This makes the solution S(ζ) well defined.
Differentiating the limit version of (3.19) with respect to S and inverting we get

dS

dζ
(ζ) = − G(S(ζ))

p′imb(S(ζ))
. (3.20)

Rearranging terms completes the proof.

u

S
SB ST

lim
ε→0

ζε(SB)

= −∞

lim
ε→0

ζε(ST )

=∞

EB

ET

pimb
pdrn
P+

lim
ε→0

(Sε, uε)

−ζSB

ST

pimb(ST )

uT

pimb(SB)

uB

0

S(−ζ)
u(−ζ)

Figure 8: Orbit for limiting case ε→ 0 in S-u plane (left); and saturation and pressure profiles
for the limiting orbit as a function of −ζ = x− ct (right).

Remark 3.2. Propositions 3.4, 3.5 and 3.6 characterise the behaviour of the orbits in the
limiting case ε → 0. These orbits are approaching vertical segments at S = SB and S = ST ,
and in between the primary imbibition curve (see Figure 8). Possible oscillations can appear
around ET when ST < 1. As ε → 0, these oscillations are damped in the S component, but
we are unable to show a similar behaviour for the pressure. Computational results shown in
Figures 19 and 20 indicate that pressure oscillations do not decay as ε decreases. However,
these oscillations cannot be observed in reality for ε → 0 as they are pushed towards infinity.
Proceeding as in Corollary 3.1, one can show that ζ∗ε → −∞ as ε→ 0 and a similar result holds
for the other side, determined by ST . In other words, the oscillations move to infinity and at
any finite point the limiting waves are monotone in both saturation and pressure and they lie
on the primary imbibition curve.

4 Dynamic capillarity

Now we discuss the case without hysteresis, but include dynamic effects in the Pc-S relationship.
More precisely, we assume that the primary curves in (2.5) are the same, pimb = pdrn, giving
P−(S) = 0 and P+(S) = pimb(S) for all S. For the ease of presentation, as many results in this
case are similar to the ones for the hysteresis model, we still use the notations P±.
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At the same time we now take τ > 0 and thus (2.10) and (2.12) become u = P+(S) −
τf(S)∂tS. With the TW velocity c given in (2.19), the dynamical system (2.14)-(2.15) associated
to the TW solutions become,

S′ =
P+(S)− u
cτf(S)

, (4.1)

u′ = G(S;SB, ST ). (4.2)

As before, we seek orbits that connect the equilibria EB = (SB, P
+(SB)) and ET = (ST , P

+(ST )),
where 0 < SB < ST ≤ 1. To fix the orbits we normalize the orbits by assuming that
S(0) = (SB + ST )/2. We remark that this section borrows ideas and extends results from
[17, 44, 46, 49].

Before investigating the existence of the TW solutions to the system (4.1)-(4.2) we observe
that in certain cases the analysis can be reduced to the simpler case f ≡ 1. To see this we
introduce the transformed variable

Y = Y (S) =

∫ S

0
f(%)d%. (4.3)

Following from Assumption (A.2), this transformation has a unique inverse which we write as
S = S(Y ). Also, Y (1) <∞ if and only if f ∈ L1(0, 1). In terms of (Y, u), the system (4.1)-(4.2)
becomes

Y ′ =
P̃+(Y )− u

cτ
, (4.4)

u′ = G̃(Y ;YB, YT ), (4.5)

with Yi =
∫ S`

0 f(%)d% for i ∈ {B, T} and the functions P̃+, G̃ defined as

P̃+(Y ) = P+(S(Y )) and G̃(Y ;YB, YT ) = G(S(Y );SB, ST ). (4.6)

Observe that the system (4.4)-(4.5) is qualitatively similar to (4.1)-(4.2) for the constant
damping function, f ≡ 1. The difference is in a reinterpretation of the nonlinearities P+ and
G. In view of this we start analysing the existence of TW solutions and their properties by
replacing (4.1) with the simpler equation

S′ =
P+(S)− u

cτ
. (4.7)

The more general case when f ∈ L1(0, 1) is discussed briefly at the end of Subsection 4.1.
Moreover, the analysis also extends to cases when f 6∈ L1(0, 1). As will be seen in Subsection
4.2, the case f 6∈ L1 gives a natural framework in which the saturation remains within the
physically relevant range, S ∈ [0, 1].

4.1 General behaviour of the orbits

As for the hysteresis case, in this part we analyse the existence of orbits of the system (4.7),
(4.2) connecting the equilibrium points EB and ET . Clearly, these orbits will depend on τ ,
motivating the notation (Sτ , uτ ). Below we use the regions

H1 = {(S, u) : SB ≤ S ≤ ST , u ≤ P+(S)}, H2 = {(S, u) : ST ≤ S ≤ 1, u ≤ P+(S)},
H3 = {(S, u) : ST ≤ S ≤ 1, P+(S) ≤ u}, H4 = {(S, u) : SB ≤ S ≤ ST , P+(S) ≤ u}.
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P+

Figure 9: The directions followed by the orbits
in the S-u plane for dynamic capillary case.

Figure 9 shows the directions followed by the
orbits of the system (4.7), (4.2). Note that if an
orbit goes through H1, there it is monotone in
both components, namely u′τ < 0 and S′τ > 0.
Hence an orbit can only exit H1 through the line
S = ST .
A straightforward calculation shows that the
eigenvalues for the linearization of (4.7), (4.2)
around Ei = (Si, P

+(Si)) (i ∈ {B, T}) are

λ±τ =
(P+)′(Si)

2cτ

(
1±

√
1− 4cτ(k′(Si)− c)

k(Si)(P+′(Si))2

)
.

(4.8)

Since k is convex, one has k′(ST ) > c > k′(SB), which shows that EB is a saddle point.
Further, the unstable orbit leaving EB to the right enters the region H1. To understand its
behaviour as ζ →∞ we begin with

Proposition 4.1. Given τ > 0, the orbit (Sτ , uτ ) leaving EB into H1 either approaches ET
from H1 as ζ →∞, or leaves H1 through the vertical line S = ST .

Proof. In view of the monotonicity inside H1, if (Sτ , uτ ) does not leave H1 through its right
boundary it will approach an equilibrium contained in H1 and at the right of EB. Since k is a
convex function, the only such point is ET .

As for the hysteresis model, all orbits (Sτ , uτ ) are monotone between (SB, ST ). So, similar
to Theorem 3.1, with the stated normalization Sτ (0) = (SB + ST )/2, it is possible to define
the functions ζτ , wτ : (SB, ST ) → R for the dynamic capillarity model as well. More precisely,
for any S ∈ (SB, ST ), a unique ζτ (S) exists such that Sτ (ζτ (S)) = S and Sτ (ζ) < S for all
ζ < ζτ (S). With this, wτ (S) = uτ (ζτ (S)). Also one can extend wτ to the closed interval
[SB, ST ].

We emphasize on the fact that the functions are defined as long as Sτ remains increasing. In
particular, this holds until the orbit leaves H1 ∪H2. Similar to (3.7), wτ satisfies the equation

w′τ (S) =
τcG(S;SB, ST )

P+(S)− wτ
. (4.9)

The propositions below explain how the orbits (Sτ , uτ ) depend on τ , before they leave H1.

Proposition 4.2. For the family of functions wτ introduced above one has

(a) wτ → P+ uniformly in [SB, ST ] as τ → 0.

(b) For any S ∈ (SB, ST ], wτ (S)→ −∞ as τ →∞.

Proof. We define the family of functions vτ : [SB, ST ]→ [0,∞), vτ (S) = P+(S)− wτ (S). Note
that since (Sτ , uτ ) ∈ H1, vτ is always positive. By (4.9) we get

1

2
(v2)′(S) = vv′(S) = −cτG(S;SB, ST ) + vP+′ ≤ −cτG(S;SB, ST ). (4.10)

Integration from S = SB to an arbitrary S ∈ (SB, ST ) gives

v2(S) ≤ −2cτ

∫ S

SB

G(%;SB, ST )d% ≤ −2cτ

∫ ST

SB

G(%;SB, ST )d% = 2τK̄,
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with K̄ = −c
∫ ST
SB
G(%)d% ≥ 0. This implies

0 ≤ P+(S)− wτ (S) ≤
√

2τK̄. (4.11)

Observing that K̄ does not depend on S, the conclusion follows immediately.
For the second part, assume there exists L > 0 and S∗ ∈ (SB, ST ] such that wτk(S∗) >

P+(S∗)−L for a sequence {τk}k∈N going to infinity. Since wτk is strictly decreasing in [SB, ST ]
we have P+(S)−wτk(S) < P+(S)−P+(S∗) +L if SB < S < S∗. Since G(S;SB, ST ) < 0 in H1

integration of (4.9) gives

wτk(S∗) = wτk(SB) + cτk

∫ S∗

SB

G(%)

P+(%)− wτk(%)
d%

< P+(SB) + cτk

∫ S∗

SB

G(%;SB, ST )

P+(%)− P+(S∗) + L
d% = P+(SB)− cτkKs, (4.12)

with Ks =
∫ S∗
SB

G(%;SB ,ST )
P+(%)−P+(S∗)+Ld%. Clearly, Ks > 0. Since limk→∞ τk =∞, this contradicts the

assumed boundedness of wτk and the proposition is proved.

The orbits depend continuously and monotonically on τ , as follows from

Proposition 4.3. For all S ∈ [SB, ST ], wτ (S) is continuously decreasing with respect to τ .

Proof. The proof for the monotonicity follows the arguments in the proof of Theorem 3.1 (b)
and is omitted.

For the continuity we take S ∈ (SB, ST ] and 0 < τ1 < τ2, and use again the functions
vı = P+ − wτı , ı ∈ {1, 2}. From (4.10) and using the monotonicity of wτ with respect to τ one
obtains

1

2
(v2

2 − v2
1)′(S) = −c(τ2 − τ1)G(S;SB, ST ) + (v2 − v1)P+′(S) < −c(τ2 − τ1)G(S;SB, ST ).

With K̄ defined above, integration gives

0 < v2
2(S)− v2

1(S) < 2(τ2 − τ1)K̄,

which implies the continuity with respect to τ of v and consequently of wτ .

u

S
10

0
SB ST

H1 H2

H4

H3

0 < τ1 < τ2 < τ3

EB

ET

P+

(Sτ1 , uτ1)
(Sτ2 , uτ2)
(Sτ3 , uτ3)

Figure 10: The dependence of the orbits (Sτ , uτ )
on τ for SB < S < ST .

From the discussion so far we conclude
that the orbits (Sτ , uτ ) are close to the
graph of P+ for small values of τ , but
move away from it as τ increases, and for
S ∈ (SB, ST ]. This situation is presented
in Figure 10. In the remaining part of this
subsection we focus on the behaviour of
the system beyond the point S = ST . The
main goal is to show that orbits connecting
EB and ET exist for all values of τ > 0.
In Theorem 4.1 we show this for small
values of τ and for larger τ values the
existence is shown in Theorems 4.2 and 4.3.
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Theorem 4.1. Let {(Sτ , uτ )}τ>0 be the family of orbits of (4.7), (4.2), originating from EB
and entering H1. Then there exists a τ∗ > 0 such that wτ∗(ST ) = 0. For all τ ∈ (0, τ∗] the
system (4.7), (4.2) has a unique orbit (Sτ , uτ ) satisfying Sτ (0) = (SB + ST )/2 and connecting
EB and ET .

Proof. The existence of a τ∗ for which wτ∗(ST ) = 0 follows directly from Propositions 4.2 and
4.3. Also, wτ (ST ) < 0 for τ > τ∗ and wτ (ST ) > 0 for τ < τ∗.

u

S
10

0
SB ST

H1

H2

H4

H3

EB

ET

ζZ

ζR

ζP

ζT

P+

(Sτ , uτ )

Figure 11: Behaviour of the orbit (Sτ , uτ ) for
τ ≤ τ∗.

To understand the behaviour of (Sτ , uτ ) for
τ < τ∗ we recall Proposition 4.1, which states
that the orbit either approaches ET or enters
H2 through S = ST at a finite ζT . In the
latter case, which is displayed in Figure 11,
uτ becomes increasing for ζ > ζT . With τ <
τ∗, since P+(1) = 0 < uτ (ζT ) < P+(ST )
the orbit must intersect the graph of P+ at
some ζ = ζP and enter H3, where Sτ becomes
decreasing whereas uτ is still increasing. We
claim that the orbit either approaches ET , or
enters H4 for some ζ = ζR.

To see this, assume that a δ > 0 exists such that Sτ (ζ) ≥ ST + δ for all ζ > ζP . As Sτ is
bounded and decreasing, the limit limζ→∞ Sτ (ζ) exists and is finite. Denoting it by S̃τ we have
S̃τ ≥ ST + δ. Further, since uτ is only bounded from below, a similar reasoning shows that
either limζ→∞ uτ (ζ) = ũτ ∈ [P+(S̃τ ),∞) or uτ →∞.

Since Sτ is decreasing with ζ and bounded from below, limζ→∞ S
′
τ = 0. From (4.7) one gets

ũτ = P+(S̃τ ). Therefore uτ has a (finite) limit as ζ →∞ and from (4.2) we get limζ→∞ u
′
τ = 0.

In other words, (S̃τ , ũτ ) is an equilibrium point, which is not possible since k is a convex function
and therefore G has only two zeros. This rules out the possibility that Sτ is bounded away from
ST , so either limζ→∞ Sτ (ζ) = ST , or the orbit enters H4 at some finite argument ζR.

In the former case it follows as before that the orbit ends up in ET . In the latter case we
follow the arguments in Theorem 3.2 to prove that (Sτ , uτ ) cannot end up back in EB, or leave
H4 through the line S = SB. This means that it enters H1 again at some ζ = ζZ . However, in
this case the incoming part of the orbit is above the part emerging from EB, and therefore the
set bounded by {(Sτ (ζ), uτ (ζ)) : ζ < ζZ} and the graph of P+ from EB to (Sτ (ζZ), uτ (ζZ)) is
positive invariant. With this, the proof continues as in Theorem 3.2.

Theorem 4.1 states that the orbits go to ET for all τ ∈ (0, τ∗] but it does not state how the
orbits behave close to ET . This is given in

Proposition 4.4. There exists a τm > 0 such that for τ ∈ (0, τm] any orbit going to ET goes
either directly or after a finite number of turns around ET , and for τ > τm the orbit is a stable
spiral around ET .

Proof. To prove this part we use the eigenvalues of the linearization around ET , computed in

(4.8). Let τm = k(ST )(P+′ (ST ))2

4c(k′(ST )−c) . Note that ET is a stable sink for 0 < τ ≤ τm and a stable spiral
for τ > τm. This proves the statement of Proposition 4.4.

Having explained the behaviour of orbits close to ET we again turn to existence, this time
for τ > τ∗. As will be seen below, the orbits connecting EB and ET exist for τ > τ∗ too, but to
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prove this we have to introduce

α(SB, ST ) =

∫ 1

SB

G(%;SB, ST )d%. (4.13)

S

1

0

1

k(S)

G(S)
∫
S

SB

G(̺)d̺

SB
ST

Figure 12: The functions k, G, and the
primitive of G.

By the convexity of k, as stated in Assump-
tion (A.1), and the definition G(S;SB, SB) =

1 − k′(SB)(S−SB)+k(SB)
k(S) , for any fixed S ∈ (SB, 1]

the function G is decreasing with respect to ST ∈
(SB, 1]. Also, one has G(S;SB, ST ) < 0 if S ∈
(SB, ST ) and G(S;SB, ST ) > 0 if S ∈ (ST , 1].
Moreover,

α(SB, 1) < 0 < α(SB, SB), (4.14)

and α(SB, ·) is decreasing in [SB, ST ]. Observe
that α(SB, ST ) does not depend on τ . Fig-
ure 12 shows how the functions k(S), G(S) and
∫SSB G(%;SB, ST )d% vary with S .

With this we can now state the following

Theorem 4.2. Let SB, ST ∈ (0, 1], SB < ST and α(SB, ST ) be defined as above. If α(SB, ST ) ≥
0 then for all τ > τ∗ the orbit (Sτ , uτ ) reaches ET as ζ →∞.

Proof. Since α(SB, ST ) ≥ 0, by the properties of G an Sα ∈ [ST , 1] exists such that∫ 1

Sα

G(S;SB, ST )dS = α(SB, ST ). (4.15)

Clearly, Sα < 1 if α(SB, ST ) > 0 and Sα = 1 if α(SB, ST ) = 0. Figure 13 (left) shows the
location of Sα as the point where the hashed areas, below and above the S-axis, are equal. We
rewrite (4.9) as

d

dS

(
P+(S)wτ −

1

2
w2
τ

)
= cτG(S) + wτ

dP+

dS
. (4.16)

G

S
10 SαSB ST S

1

0

P+

(Sτ , uτ )

u α(SB, ST ) > 0

τ > τ∗

SB S1 ST S2 Sα

Figure 13: Left: Sα is the saturation at which the hashed area above the S-axis equals the one
below the S-axis. Right: The (Sτ , uτ ) orbits for τ > τ∗ and α(SB, ST ) > 0. S1(τ), S2(τ) and
Sα are shown in the image for this particular ST value.

Since τ > τ∗, wτ (ST ) < 0. Let S1(τ) ∈ (SB, ST ) be such that wτ (S) > 0 for all S ∈
[SB, S1(τ)), i.e. the first point where the orbit (Sτ , uτ ) enters the region u < 0. Observe that
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wτ is increasing for S > ST . Further, let S2(τ) ∈ (ST , 1] be such that wτ (S2(τ)) = 0 and
wτ (S) < 0 for all S ∈ (S1(τ), S2(τ)) . We prove that S2(τ) < 1, thus the orbit returns in
the upper half plane (see also Figure 13). More precisely, since α(SB, ST ) ≥ 0, we prove in
Proposition 4.6 that S2(τ) < Sα for all τ > τ∗.

Assume that S2(τ) = 1 for some τ > τ∗, then the domain of definition of wτ can be extended
to [SB, 1]. Integrating (4.16) from S1(τ) to 1 gives

−1

2
w2
τ (1) = cτ

∫ 1

S1

G +

∫ 1

S1

wτ
dP+

dS
.

Moreover, for S ∈ (S1(τ), 1) one has wτ (S) < 0 and since G(S;SB, ST ) < 0 for S ∈ (SB, ST )
one has

α =

∫ 1

SB

G(S)dS =

∫ S1

SB

G +

∫ 1

S1

G

=

∫ S1

SB

G − 1

2cτ
w2
τ (1)− 1

cτ

∫ 1

S1

wτ
dP+

dS
< 0,

which contradicts the assumption α(SB, ST ) ≥ 0. Therefore, if τ > τ∗, a S2(τ) ≤ 1 exists such
that wτ (S2(τ)) = 0, meaning that the orbit (Sτ , uτ ) intersects the axis u = 0 for the second
time. Following the reasoning in the proof of Theorem 4.1 one obtains that (Sτ , uτ ) ends up in
ET .

The proof of Theorem 4.2 introduces three important values for the saturation, Sα given by
(4.15), and S1(τ), S2(τ), the abscissas where the orbit intersects the axis u = 0. Below we give
some results on the boundedness of wτ , Sα and S2(τ). We start with

Proposition 4.5. Let τ > τ∗ be such that S2(τ) ∈ (ST , 1] exists. Then

wτ (ST ) > −K
√
τ ,

where K2 = 2c
∫ 1
ST
G(S)dS

Proof. Equation (4.9) gives (P+(S)− wτ )w′τ = cτG(S). As w′τ (S) > 0 for S ∈ (ST , S2(τ)], this
gives −w2

τ
′
(S) < 2cτG(S). The proof follows by integrating this inequality over (ST , S2(τ)].

Observe that the estimate in Proposition 4.5 gives a lower bound for wτ since wτ (ST ) is a
minimum for wτ . Also, the result does not require that α(SB, ST ) ≥ 0.

The behaviour of Sα and S2(τ) is stated in

Proposition 4.6. Under the assumptions of Theorem 4.2, one has S2(τ) < Sα and lim
τ→∞

S2(τ) =

Sα.

Proof. To estimate S2(τ) we integrate (4.16) from S1(τ) to S2(τ) and obtain

cτ

∫ S2(τ)

S1(τ)
G(S) +

∫ S2(τ)

S1(τ)
wτ
dP+

dS
= 0.

Using this, one can split the integrals in (4.13) to obtain∫ 1

S2(τ)
G = α−

∫ S1(τ)

SB

G +
1

cτ

∫ S2(τ)

S1(τ)
wτ
dP+

dS
. (4.17)
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Denoting by I1(τ) and I2(τ) the two integrals on the right, since G < 0 for S ∈ (SB, ST ) and

wτ (S) < 0 for S ∈ (S1(τ), S2(τ)) one gets I1(τ) < 0 and I2(τ) > 0. This gives
∫ Sα
S2(τ) G > 0. As

S2(τ) > ST , G > 0 for S ∈ (S2(τ), 1) and therefore S2(τ) < Sα for all τ > τ∗.
To obtain the limit we start by proving that S1(τ)→ SB as τ →∞. Clearly S1(τ) decreases

with increasing τ and remains bounded from below by SB. Now suppose S1(τ) ≥ SB + δ for
some δ > 0 and for all τ > τ∗. Since wτ (S) > 0 and G(S) < 0 for S ∈ (SB, S1(τ)), integrating
(4.9) from SB to S1(τ) gives

P+(SB) = cτ

∫ S1

SB

−G(S)

P+(S)− wτ (S)
dS > − cτ

P+(SB)

∫ SB+δ

SB

G(S)dS.

This gives a contradiction for large τ as c and G do not depend on τ . Hence lim
τ→∞

I1(τ) = 0.

To estimate I2 we use Proposition 4.5 and the properties of wτ

0 < I2(τ) =
1

cτ

∫ S2

S1

uτ
dP+

dS
<

1

c
√
τ
P+(SB)K. (4.18)

Hence lim
τ→∞

∫ 1
S2
G(S)dS = α =

∫ 1
Sα
G(S)dS. This proves that S2 → Sα for τ →∞.

Having understood the behaviour of the orbits for the case α(SB, ST ) ≥ 0 we proceed by
analysing the case α(SB, ST ) < 0. In particular this situation occurs when ST is close enough
or equal to 1.

Lemma 4.1. Let SB, ST ∈ (0, 1], SB < ST and α(SB, ST ) introduced in (4.13). If α(SB, ST ) <
0 then a τ∗ > τ∗ exists such that for all τ > τ∗, the orbit (Sτ , uτ ) passes through a point
(1, wτ (1)) with wτ (1) < 0.

Proof. We use ideas that are similar to the ones in the proof of Theorem 4.2. Assume that
S2(τ) ≤ 1 for all τ > τ∗. Integrating (4.16) from S = SB to S = S2(τ) gives

−1

2
P+(SB)2 = cτ

∫ S2(τ)

SB

G(S) +

∫ S2(τ)

SB

wτ
dP+

dS
< cτα+ wτ (ST )(P+(S2)− P+(SB))

< cτα− wτ (ST )P+(SB) < cτα+ P+(SB)K
√
τ .

Since α < 0 this gives a contradiction for τ exceeding a τ∗ ≥ τ∗, where τ∗ is determined such
that the term on the right in the equation above becomes equal to −1

2P
+(SB)2. From this it

follows that for τ > τ∗ the orbit (Sτ , uτ ) has no second intersection point with the u-axis before
passing through the vertical line S = 1, therefore wτ (1) < 0.

From Lemma 4.1 we see that, if α(SB, ST ) < 0 and τ is large enough, the orbit (Sτ , uτ )
wants to exit the strip [0, 1]× R through the half-line {(1, u) : u < 0}. However, the functions
P+ and k are only defined inside the physically relevant regime S ∈ [0, 1] which makes the
continuation of the orbits impossible and non-physical. Below we propose an extension of the
model which allows continuation of the orbit within the physically relevant strip. It is based on
the multi-valued extension of the P+ curve,

Pe(S) =

{
P+(S), for 0 < S < 1,

(−∞, 0] for S = 1.
(4.19)
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Such an approach is also used for defining extended pressure conditions in the case of porous
media with block-type heterogeneities when models involving an entry pressure are adopted
(see e.g. [9, 40]). With the extension the equations read

S′ ∈ Pe(S)− u
cτ

, (4.20)

u′ = G(S;SB, ST ). (4.21)

This formulation implies that if S = 1 in a set I of positive measure, then S′ = 0 in I and
u ∈ Pe(1) = (−∞, 0] in I. Moreover, from the u-equation,

u′ = G(1;SB, ST ) in I. (4.22)

When ST = 1 we have G(1;SB, ST ) = 0. Then any point on the half-line {S = 1} ×
{−∞ < u ≤ 0} is an equilibrium point, and the compatibility condition u = P+(ST ) should be
interpreted as uT ∈ Pe(1) = (−∞, 0]. We exploit this observation in the following construction.

ST < 1

From Lemma 4.1 if τ > τ∗, the orbit (Sτ , uτ ) starting from EB reaches S = 1 at finite ζ = ζ̂
where uτ (ζ̂) = û < 0. Then at (1, û) we continue the orbit by the vertical upwards segment
{1} × [û, 0]. Observe that along the segment, (4.20) and (4.21) are still satisfied. Since now
u′ = G(1;SB, ST ) = constant, we have u′ = ∆u

∆ζ = − û
∆ζ = G(1;SB, ST ) > 0, yielding the length

of the ζ interval when S = 1.
Now taking (1, 0) as the starting point of (4.20) and (4.21) with ζ > ζ̂ + ∆ζ, we continue

the construction as before. Again one uses the divergence argument from Theorem 3.2 to show
that the orbit spirals into ET . In particular the orbit cannot reach S = 1 for a second time as
this would lead to a limit cycle which is ruled out from previous arguments.

ST = 1
In this case the entire half-line {1} × (−∞, 0] consists of equilibrium points. As before the

orbit reaches S = 1 at finite ζ = ζ̂, with u = û < 0. But it stays at this point for all ζ ≥ ζ̂.

Summarising we have

Theorem 4.3. Let τ∗ be as in Lemma 4.1 and for any τ > τ∗ let (Sτ , uτ ) be the orbit satisfying
(4.20),(4.21) emerging from EB. Then

(a) For ST < 1 the orbit reaches S = 1 at finite ζ = ζ̂ with u(ζ̂) = û < 0. It continues along
the segment {S = 1}×{−∞ < u ≤ 0}. At the point (1, 0) it re-enters the set {S < 1}×R
and connects to ET as ζ →∞.

(b) For ST = 1, again the orbit reaches S = 1 at finite ζ = ζ̂ with u(ζ̂) = û < 0. Since (1, û)
is an equilibrium, the orbit remains in this point for all ζ ≥ ζ̂.

Remark 4.1. To avoid non-physical saturation regimes, we have considered a multi-valued
extension of the P+-S curve. Whenever S = 1, the specific value of Pe is taken such that
Pe and u are in equilibrium yielding S′ = 0. For analysing the orbits in this case, one can
also consider a regularised approximation of Pe. More precisely, with δ > 0 being a small
regularisation parameter, define

P δe (S) =

P
+(S) if S < 1,

1

δ
(1− S) if S ≥ 1

, Ge(S;SB, ST ) =

{
G(S;SB, ST ) if S < 1,

G(1;SB, ST ) if S ≥ 1.
(4.23)
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Letting now (Sδτ , u
δ
τ ) be the orbits satisfyingS′ =

P δe (S)− u
cτ

,

u′ = Ge(S;SB, ST ),

(4.24)

and starting from EB, one can analyze the behaviour of these orbits when δ → 0. In fact, this
regularisation approach is being used for the numerical solutions presented in Section 5.

Having understood the above we can now distinguish the following situations which are
shown in Figure 14. If α > 0 the orbits stay away from S = 1 and approach ET either directly
or after spiraling (see Figure 14a). The situation is similar if α < 0 and τ < τ∗. Whenever
α < 0 and τ > τ∗ then the orbit (Sτ , uτ ) has a vertical section at S = 1. The orbits (Sτ , uτ )
for α < 0 are shown in Figure 14b.

S
0

P+

(Sτ1
, uτ1

)
(Sτ2

, uτ2
)

Case: α(SB , ST ) > 0

u

SB ST

τ2

τ1

τ2 > τm

τ1 < τm

(a) Typical orbits for α(SB, ST ) > 0

S
1

0

Pe

(Sτ1
, uτ1

)
(Sτ2

, uτ2
)

τ1

τ2SB

τ
∗ < τ2

τ∗ < τ1 < τ
∗

Case: α(SB , ST ) < 0

ST

u

(b) Typical orbits for α(SB, ST ) < 0

Figure 14: Behaviour of the orbits (Sτ , uτ ) for τ > 0 and f(S) = 1.

We conclude this subsection by comparing the case f ∈ L1(0, 1), f 6≡ 1 to the case f ≡ 1.
This means that one has to repeat the previous arguments for the system (4.4)-(4.5), now in
terms of Y . With the functions introduced in (4.6), the direction of the orbits in the (Y, u)
plane remains unaffected since G̃(Y ;YB, YT ) < 0 for YB < Y < YT and G̃ ≥ 0 elsewhere in
(0,∞) due to the convexity of k. The eigenvalues at (YB, uB) and (YT , uT ) behave similarly:
now the critical τ = τ̃m value at (YT , uT ) becomes

τ̃m =
(P̃+′(YT ))2

4cG̃′(YT )
=

(P+′(ST ))2

4cG′(ST )f(ST )
=

τm
f(ST )

.

Propositions 4.1-4.3 remain valid, with the redefinition K̄ = −c
∫ YT
YB
G̃(Y )dY . The existence

Theorem 4.1 works also for this case, but now the divergence argument uses the function

F = ( 1
cτ (P̃+(Y )− u), G̃(Y )), for which ∇ ·F = 1

cτ (P̃+(Y ))′ = (P+)′(S)
cτf(S) < 0. Also, the parameter

α given in (4.13), needs to be redefined as

α̃(YB, YT ) =

∫ Y (1)

YB

G̃(Y ;YB, YT )dY =

∫ 1

SB

f(S)G(S;SB, ST )dS. (4.25)

With this, the statement of Theorem 4.2 remains unchanged. Yα, which corresponds to Sα
defined in (4.15), can now be defined as∫ Y (1)

Yα

G̃(Y ;YB, YT )dY = α̃(YB, YT ). (4.26)
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Consequently, the new Sα satisfies Yα =
∫ Sα

0 f(S)dS, or
∫ Sα
SB
G(S)f(S)dS = 0. The constant K

used in Propositions 4.5 and 4.6 becomes K = 2c
∫ Y (1)
YT

G̃(Y )dY . Lemma 4.1 remains the same.
Finally, for proving Theorem 4.3 we now use the extension

P̃e(Y ) =

{
P̃+(Y ), for 0 < Y < Y (1),

(−∞, 0] for Y = Y (1).
(4.27)

Following the arguments of Theorem 4.3 we get that Y reaches Y (1) for a finite ζ = ζ̃ with
u(ζ̃) = ũ < 0 and depending upon whether ST < 1 or ST = 1 either the orbit reaches (YT , uT )
or stays at (Y (1), ũ).

4.2 The case when f /∈ L1(0, 1)

The TW analysis of the dynamic capillarity model up to now is restricted to the case when
f ∈ L1(0, 1). This might not always be true. Since f is assumed continuous and positive on
[0, 1), f /∈ L1(0, 1) implies that it becomes unbounded at S = 1. As will be proved below, in
this case S = 1 is an upper bound for the saturation and the orbits remain inside the physically
relevant regime 0 ≤ S ≤ 1. This is like in the case α(SB, ST ) < 0 discussed before, but now
extending the capillary pressure is not needed anymore.

Let δ > 0 be arbitrarily small. Whenever S ≤ 1− δ, one can apply the transformation (4.3)
to reduce the model (4.1)–(4.2) to the case analysed in Subsection 4.1 and most of the results
there still remain valid. In particular, the orbits remain monotone if S ∈ (SB, ST ). The main
difference appears close to S = 1, whenever this value is approached. We have

Theorem 4.4. Assume f /∈ L1(0, 1) and let τ > 0, SB ∈ (0, 1), ST ∈ (SB, 1] be given. For the
orbits (Sτ , uτ ) leaving EB one has

(a) If ST < 1, then Sτ (ζ) < 1 for all ζ ∈ R.

(b) If ST = 1, then two cases can occur.

(b.1) If fG 6∈ L1(0, 1) then as ζ →∞, Sτ → 1 and uτ → −∞.

(b.2) If fG ∈ L1(0, 1) then there exists a u∗ ∈ (−∞, P+(1)] such that lim
ζ→∞

(Sτ , uτ ) →

(1, u∗).

Proof. (a) Assume first that ST < 1. Compared to the situation analysed in Theorem 4.1, the
differences appear whenever Sτ approaches 1. We therefore focus on part of the orbit satisfying
Sτ > ST . In this case, u′τ > 0 whereas S′τ > 0 as long as the orbit (Sτ , uτ ) stays below the P+

curve. Two situations are possible: the orbit either intersects the P+ curve for some argument
ζ3, or it reaches the line S = 1.

In the former situation, let S3,τ = Sτ (ζ3). We know that Sτ (ζ) ≤ S3,τ for all ζ ∈ R, so if
S3,τ < 1 then the proof is completed. Assuming the contrary, namely that a τ0 > 0 exists such
that S3,τ0 = 1, one has uτ0(ζ3) ≤ P+(1) and (4.9) gives

dwτ
dS

(S) =
τcf(S)G(S)

P+(S)− wτ
. (4.28)

As P+′(S) < 0 and G(S) > 0 for S ∈ [ST , 1) one uses (4.11) to see that P+−wτ0 ≥ 0 decreases
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for S ∈ [ST , 1]. Further, integration of (4.10) gives (with redefinition K̄ = −c ∫STSB f(%)G(%)d%)√
2τ0K̄ > P+(ST )− wτ0(ST ) > wτ0(1)− wτ0(ST )

=

∫ 1

ST

τ0cf(S)G(S)

P+(S)− wτ0(S)
dS ≥ τ0c

P+(ST )− wτ0(ST )

∫ 1

ST

f(S)G(S)dS

≥ τ0c

P+(ST )− wτ0(ST )

∫ 1

ST+1

2

f(S)G(S)dS ≥ cτ0mG
P+(ST )− wτ0(ST )

∫ 1

ST+1

2

f(S)dS,

with mG = min{G(S), 1
2(ST + 1) ≤ S ≤ 1}. Since mG > 0 and f /∈ L1(SB, 1), the integral on

the right is unbounded, which gives a contradiction.
The second case, when the orbit reaches the line S = 1, can be ruled out by similar argu-

ments. We omit the details here.
(b) For ST = 1, observe that S

′
τ (ζ) > 0 for (Sτ , uτ ) ∈ H1 and Sτ is bounded above by

1 following the arguments used for proving Corollary 3.1. Consequently Sτ has a limit S∞
for ζ → ∞. Assume S∞ < 1. We know that u

′
τ (ζ) decreases monotonically for ζ ∈ R so

that there are two possibilities. If limζ→∞ uτ (ζ) = u∞ > −∞ then from (4.1) and (4.2)
it follows that S

′
τ and u

′
τ both have a limit as ζ → ∞. Moreover, since Sτ and uτ have

horizontal asymptotes, it means that limζ→∞ S
′
τ (ζ) = limζ→∞ u

′
τ (ζ) = 0. From (4.2) we then

get G(S∞) = 0, contradicting S∞ < 1. On the contrary, if limζ→∞ uτ (ζ) = −∞ then from (4.2)
we get

S
′
τ (ζ) =

P+(S)− uτ (ζ)

cτf(S)
≥ P+(S)

cτf(S)
≥ inf

S∈[SB ,S∞]

{
P+(S)

cτf(S)

}
> 0,

for all ζ > Mζ with some large enough Mζ . This means that Sτ cannot have a limit S∞ < 1.
Therefore the only possibility remaining is lim

ζ→∞
Sτ = S∞ = 1.

Now let us consider the case fG 6∈ L1(0, 1). Observe that since G < 0 for S ∈ (SB, 1) one has
∫1
SB
f(−G) =∞. If wτ tends to u∗ > −∞ then integrating (4.28) from SB to 1 and multiplying

by −1 we get

P+(SB)− u∗ =

∫ 1

SB

−τcf(S)G(S)

P+(S)− wτ (S)
dS >

τc

P+(SB)− u∗

∫ 1

SB

f(S)(−G(S))dS,

which is a contradiction since the term on the left is bounded whereas the integral on the right
is not. Hence limS→1wτ = −∞.

Next, for fG ∈ L1(0, 1) after redefining K̄ as K̄ = −c ∫1
SB
Gf , Proposition 4.2 gives a lower

bound for wτ (ST ) that is uniform for all SB < ST ≤ 1. Also observe that for a fixed SB,
wτ (S;SB, ST ) are well ordered with respect to ST meaning that for SB < ST,1 < ST,2 < 1,
wτ (S;SB, ST,1) > wτ (S;SB, ST,2) in their common domain of definition. To see why this holds
observe that for S ∈ (SB, ST,1) and u < P+(S),

τcf(S)G(S;SB, ST,1)

P+(S)− u
>
τcf(S)G(S;SB, ST,2)

P+(S)− u

with G(S;SB, ST,1) > G(S;SB, ST,2) following from the convexity of k. Using (4.28) and
proceeding as in the proof of Theorem 3.1 we conclude that the orbits are well-ordered in
S ∈ (SB, ST,1) with respect to ST . As wτ (S;SB, ST,1) > wτ (ST,1;SB, ST,1) for S > ST,1, the
well ordering holds throughout the common domain of definition. In view of the boundedness of
wτ (ST ) mentioned before, limST→1wτ (ST ;SB, ST ) = u∗ > −∞. Finally proceeding like proof
of Corollary 3.1 one proves that this value can be only attained as ζ →∞.
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Figure 15: Typical (Sτ , uτ ) orbit for the case f 6∈ L1(0, 1), ST < 1.

From the proof above we see that in the case ST < 1, for any τ > 0 the orbit may turn
around the equilibrium ET without reaching the line S = 1. In particular, an S3,τ ∈ (ST , 1)
exists such that the orbit interescts the graph of P+ for the first time after EB in the point
(S3,τ , P

+(S3,τ )), see Figure 15. Moreover, since f ∈ C(0, 1)\L1(0, 1) whereas G ∈ C[0, 1] with

G(1) > 0 one has limS↗1

∫ S
SB
f(z)G(z)dz =∞. Since G < 0 on (SB, ST ), a unique Sα ∈ (ST , 1)

exists such that ∫ Sα

SB

f(S)G(S)dS = 0.

Observe that this simply extends the definition of Sα in (4.13), given for the case f ≡ 1 to
f ∈ L1(0, 1) and f 6∈ L1(0, 1). Having introduced the above, as in the case f ≡ 1, it is
interesting to see what happens if τ becomes very large. We have:

Corollary 4.1. Let ST < 1 and Sα, S3,τ be as introduced above. Then lim
τ→∞

S3,τ = Sα.

Proof. As in the proof of Proposition 4.3, the orbits are ordered with respect to τ . Therefore
S3,τ is increasing with respect to τ and bounded from above, S3,τ < 1. Hence there exists the
limit limτ→∞ S3,τ = S∗3 . As in Theorem 4.2, for τ > τ∗ and S > ST let S2,τ be the abscissa
where the orbit intersects the axis u = 0. Following the argument in Theorem 4.2, one proves
that limτ→∞ S2,τ = Sα. Also as S3,τ > S2,τ it is easy to see that S∗3 ≥ Sα. Now integrating
(4.28) from S2,τ to S3,τ gives

P+(ST ) > wτ (S3,τ ) =

∫ S3,τ

S2,τ

τcf(S)G(S)

P+(S)− wτ (S)
dS ≥ τc

P+(ST )

∫ S3,τ

S2,τ

f(S)G(S)dS.

Observe that if S∗3 > Sα, since limτ→∞ S3,τ = S∗3 the integral on the right becomes positive
for τ large enough. On the other hand, since the term on the left is bounded, as τ → ∞ this
integral must approach 0. For S∗3 > Sα this gives a contradiction, so the only possibility is that
S∗3 = Sα.

Remark 4.2. For ST < 1, Corollary 4.1 shows that for all τ > 0 the orbits remain at the left of
S = Sα < 1. This means that the travelling waves exist without needing to extend the capillary
pressure in the non-physical domain S > 1.

Remark 4.3. Observe that τ and f have different effects. Specifically, changing τ affects the
orbit for all values of ζ, whereas f plays a major role only in the vicinity of S = 1.
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5 Numerical results

The numerical results presented in this section complement the theoretical findings in the pre-
vious sections. Specifically, after solving numerically the system (2.9), (2.12) we verify the
predictions made in previous sections for sufficiently large times. In the numerical calculations
we take a simple relative permeability function, k(S) = S2. The other nonlinear functions are
specified later.

5.1 Numerical Scheme

We start by presenting the numerical scheme. Below ε > 0 and τ ≥ 0 are fixed. With SB < ST
we consider the system given by (2.9),(2.12) for t > 0 and x ∈ (−`, `). The space interval
is taken large enough to allow the saturation and pressure to develop profiles resembling the
travelling wave profiles. In all cases, ` ≥ 50.

For the numerical solution we first discretize in time (2.9) and (2.12). Let ∆t > 0 be the time
step and let tn = n∆t for n ∈ N. The time discrete unknowns Sn, un approximate the saturation
and pressure at tn. We introduce the function F which gives the discretization of ∂tS. One gets

from (2.12) that F(S, u) = cΦε

(
P+(S)−u
P−(S)

)
for the hysteresis case and F(S, u) = 1

cτ (P δe (S)− u)

for the dynamic capillarity case. With the F-notation, the explicit discretisation of (2.12) reads

Sn = Sn−1 + ∆tF(Sn−1, un−1). (5.1)

For stability we solve the time discrete version of (2.9) implicitly,

∂x (k(Sn)∂xun) = −F(Sn, un)− ∂xk(Sn), (5.2)

together with the pressure boundary conditions at x = ±`,

un(−`) = uT , un(`) = uB. (5.3)

For the spatial discretisation we use standard finite differences.
Observe that for n = 0, u0 is obtained from (5.2) by using the initial condition for saturation,

S0. The saturation initial condition is C1 approximation of the Riemann data and it is consistent
with the boundary conditions. Specifically S0 : [−`, `]→ (0, 1) satisfies

S0(x) = ST , if x ≤ −`1, respectively S0(x) = SB if x ≥ `1. (5.4)

Here `1 << ` is a positive number, and ST and SB are compatible with the corresponding
pressure values, i.e. pi = P+(Si) (i ∈ {B, T}). Here `1 = 5. Inside (−`1, `1) we take S0(x) =
(SB+ST )

2 + (ST−SB)
4`31

x(x2 − 3`21). It is to be noted that the choice S0 does not have considerable

impact on the end results as long as the necessary assumptions are satisfied.
As a validation of the numerical results, we compare the propagation speed of the numerical

profile with the Rankine-Hugoniot speed given in (2.21). The profile speed is calculated as the
speed of the point xf (t) at which S(xf (t), t) = 1

2(SB + ST ). By (2.22), ζ = 0 at this point,
meaning that xf (t) = ct. Figure 16a presents the results for the hysteresis case, which agrees
with the TW speed up to the discretisation error. The results for the dynamic capillarity model
are similar. We emphasise the fact that all results presented below are numerical approximations
of the solutions of the original system of partial differential equations and do not assume any
TW structure. Nevertheless, for t long enough the numerical solutions obtained for the specified
initial and boundary conditions develop profiles resembling closely the TW solutions.
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5.2 Iterative scheme

Observe that the equation (5.2) is nonlinear in un for the capillary hysteresis case and so an
linear iterative scheme has to be used to solve for un. For the Φε function defined in Proposition
3.1, the iterative schemes show poor convergence properties particularly because |∂uF(S, u)| can
become unbounded in this case in two different ways. Firstly, if u → pimb(S) or u → pdrn(S),
then |∂uF(S, u)| → ∞. To resolve this we define Φε on R in a way such that Φ′ε(r) = 1

ε for
|r| > 1. Note that this Φε is different from the function Φε given in Proposition 3.1, but satisfies
Assumption (A.4). This particular choice guarantees the numerical convergence of the nonlinear
problem (5.2).

Secondly, |∂uF(S, u)| → ∞ if S → 0 or S → 1. This problem is avoided by taking SB > 0
and ST < 1. So when studying the case ST = 1, we actually show the result for the limit
ST ↗ 1. With these modifications, F becomes locally Lipschitz in both variables S and u for
a fixed ε > 0.

Because Φ′ε becomes unbounded as ε → 0, iterative schemes like Newton’s method fail to
converge because of the requirement of having good initial guesses. Therefore to solve (5.2) we
use a linear iteration scheme inspired by the L-scheme discussed in [36, 38]. Specifically, for a
sufficiently large L that will be specified later and with i as the iteration index, we solve the
linear elliptic equation

Luin − ∂x
(
k(Sn)∂xu

i
n

)
= Lui−1

n + F(Sn, u
i−1
n ) + ∂xk(Sn). (5.5)

Following the arguments from [36, 38] one can show that if L ≥ Lmin > 0, the scheme in (5.5)
becomes a contraction and converges irrespective of the initial guess. However, a natural choice
is to start with u0

n = un−1. The lower bound Lmin is the Lipschitz constant of F with respect
to the variable u.

t
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Figure 16: Convergence study for the hysteresis model. The parameters are SB = 0.2, ST = 0.6,
∆x = .1, ∆t = 10−3, ε = 10−3 unless specified otherwise.
(a) xf as a function of t, where xf is the x-location at which S(xf , t) = 1

2(SB +ST ). According

to (2.21) the TW speed should be c =
dxf
dt = 0.8. From the figure we get

dxf
dt = 0.7892.

(b) Error (log10(‖uin − ui−1
n ‖L2([−`,`]))) vs iterations for different ε and ∆x pairs.

Note that the choice of L is left open, under the restriction L ≥ Lmin . For the hysteresis
case, Lmin behaves like 1

ε , which leads to very slow convergence of the scheme [36]. At the same
time, in large parts of the time-space cylinder (0,∞) × (−`, `), the values of S and u are such
that Φ′ε = O(ε), and therefore using a constant L = O(ε−1) is inefficient. To improve the local
convergence of the scheme, in the numerical calculations we have taken a variable L, namely
L(x, tn) := 2∂uF(Sn−1(x), un−1(x)) in every control volume.

The iterative process is stopped if the L2 norm of the difference between two iterates de-
creases below 10−10. Following [36, 38], the convergence is linear regardless of the mesh size.
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This can be seen in Figure 16, where the convergence of the iterative process is shown for the
hysteresis model.

Capillary Hysteresis

We start by presenting the results for the capillary hysteresis case. The primary drainage and
imbibition curves are taken such that

P+(S) =

(
1− S
S

)
, and P−(S) = 2(1− S)2. (5.6)

With b = 3
√
ε and a = (1− (ε2)

2
3 ), the function Φε used in the numerical scheme is

Φε(r) =


b+ 1

ε (r − 1) for r > 1

εr(1− ar2)−1/2 for r ∈ [−1, 1]

−b+ 1
ε (r + 1) for r < −1

.

The case ST = 1 was studied first. Observe that in this case the model degenerates whenever
S approaches 1, where P− vanishes. To avoid this degeneracy, the calculations were performed
for an ST slightly less than 1. This yields monotone profiles of S and u, as shown in Figure 17,
and is in good agreement with the TW profiles for ST = 1. The right plot presents the pair
(Sε(x, t), uε(x, t)) in the S-u plane, for a fixed t and x ∈ (−`, `). In analogy with the dynamical
system analysis for the TW solutions, we call this an “orbit”. We use this term to refer to all
similar plots that will be presented below.
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Figure 17: Left: the profiles of Sε and uε in the transformed coordinate x− ct (left); right: the
orbit (Sε, uε) for the hysteresis model in the limit case ST ↑ 1. The figures are obtained for
ST = .97, SB = 0.2, ∆x = .1, ∆t = 10−3.
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Figure 18: The orbit (Sε, uε) for SB = 0.2, ST =
0.6, ∆x = .1, ∆t = 10−3 and ε = 10−1.

Next we consider the ST < 1 case. We fix
ST = 0.6 and SB = 0.2 and vary ε. Figure
18 shows the results for ε = 10−1. Observe
that the orbit is monotone and ET is a sta-
ble sink. According to Theorem 3.2b, ET be-
comes a spiral sink as ε becomes small enough.
This is indeed the situation displayed in Fig-
ure 19, obtained for ε = 10−2. We clearly
see that the (numerical) orbit spirals toward
ET . Consequently, for t sufficiently large, the
profiles of uε and Sε are non-monotone.
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Figure 19: Left: the profiles of Sε and uε in the transformed coordinate x− ct; right: the orbit
(Sε, uε) for ε = 10−2. The other parameters are SB = 0.2, ST = 0.6, ∆x = .1, ∆t = 10−3.

The results for ε = 10−3 are similar, as shown in Figure 20. However, when compared to the
case ε = 10−2 a longer time is required until the numerical solutions develop a profile resembling
the travelling waves. To explain this, we observe that whenever pimb(S) < u < pdrn(S) one has

∂tS = Hε

(
P+(S)−u
P−(S)

)
≈ εH1

(
P+(S)−u
P−(S)

)
. Therefore the time required for a profile to develop to

a travelling wave profile scales with 1
ε . Also note that close to S = SB, the numerical orbit for

ε = 10−3 has a steeper profile than the one for ε = 10−2. This is in agreement with Corollary
3.1.
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Figure 20: Results for ε = 10−3. The other parameters are as in Figure 19.

Another observation is that the oscillations in the S and u profiles are wider for ε = 10−3

than for ε = 10−2. This also follows from Remark 3.1, stating that the period of oscillation scales
with O(ε−1/2). Lastly one can see that the amplitude of oscillations in saturation for ε = 10−3

is less than that of ε = 10−2. This follows from Proposition 3.5. This can be seen in the S–u
phase plane as well: the S-range of the spirals decreases with ε. Therefore we conclude that
the numerical results are in good agreement with the TW analysis for the hysteresis mmodel.

Dynamic Capillarity

The numerical results for the dynamic capillarity model are obtained for the quadratic function
k and the P+ function given in (5.6). Recall that in this case the two primary curves, drainage
and imbibition, are equal. This mans that P− is vanishing.
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Figure 21: Left: the profiles of Sτ and uτ in the transformed coordinate x− ct; right: the orbit
(Sτ , uτ ) for different τ values. The τ values used are τ1 = 1, τ2 = 10 and τ3 = 100. The other
parameters are SB = 0.2, ST = 0.5, ∆x = .1, ∆t = 10−3. In this case α(SB, ST ) > 0.

We first take f(S) = 1. Figure 21 displays results in the case SB = 0.2 and ST = 0.5, when
α(SB, ST ) > 0. By Proposition 4.4, a τm exists such that for τ < τm the profiles of S and u
are monotone, and for τ > τm they are non-monotone as ET becomes a spiral sink. The value
τ3 in Figure 21 is taken so that wτ3(ST ) ≈ 0. Also, a case with τ ∼ τm is shown. In this case
no oscillations are observed and the orbit goes directly to ET . These behaviours agree with the
results given in Propositions 4.2,4.3 and 4.4.
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Figure 22: Left: the profiles of Sτ and uτ in the transformed coordinate x−ct with τ = 100 > τ∗

and α(SB, ST ) < 0; right: the orbit (Sτ , uτ ) in the (S, u) plane. Here SB = 0.2, ST = 0.8. The
regularised extended model (4.24) given in Remark 4.1 has been used for this computation with
a δ value of 10−3 used in P δe (see (4.23)).

Next we take the case SB = 0.2 and ST = 0.8, in which case α(SB, ST ) < 0. To avoid the
unphysical saturation regimes we have considered extended Pe-S model given in (4.20),(4.21).
However, for the numerical solution this multi-valued extension is replaced by the regularised
P δe -S curve given in (4.23) with δ = 10−3. Figure 22 shows the profiles and orbits for τ > τ∗.
Observe that, due to the regularisation, S is still exceeding 1 and for S ≥ 1 the orbit is not
vertical but has a steep slope. As δ → 0 the possibility of having S > 1 is eliminated and
the orbit goes vertically along S = 1. Moreover, in this case pressure remains continuously
differentiable, but a kink can be observed at the transition from S = 1 to S < 1 which is as one
expects from extension (4.24) given in Remark 4.1. Therefore we claim that the results are in
good agreement with the theory.
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Finally, we investigate the case when f 6∈ L1(0, 1). We choose f(S) = 1
1−S with SB = 0.2,

ST = 0.8. The results are given in Figure 23. The profile takes considerably more time to
develop and hence a kink is still visible in Figure 23 as a remnant of the initial condition.
Compared to the case f ∈ L1(0, 1), we observe that the saturation stays below S = 1, but as
τ increases the saturation approaches Sα, which for Figure 23 is Sα = 0.9903. This is in good
agreement with the results in Theorem 4.4 and Corollary 4.1.
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Figure 23: Left: the profiles of Sτ and uτ in the transformed coordinate x − ct for the case
f 6∈ L1(0, 1); right: the orbit (Sτ , uτ ). Here f(S) = 1

1−S with SB = 0.2, ST = 0.8 and τ = 100.
The value of Sα in this case is calculated to be Sα = 0.9903.

6 Conclusion

In this paper we discussed the implications of including non-equilibrium effects in unsaturated
porous flow models. Specifically, the play-type hysteresis and dynamic capillarity effects are
considered in the saturation-pressure relationship. One focus was on analysing the occurrence
of non-monotonic saturation or pressure profiles (overshoots) arising due to the non-equilibrium
effects mentioned above. To this end, the traveling wave analysis is considered to understand
the flow in a long, homogeneous vertical porous column.

The analysis is done first for hysteresis models. In this case, the existence of travelling
wave solutions was shown first for the regularized case and then for the limiting case, leading
to a play-type hysteresis model. It was proved that oscillations may appear in the regularised
hysteresis models, which correspond to non-vertical scanning curves. However, in the limit
situation these oscillations disappear and the saturation-pressure orbits lie on the imbibition
curve.

Next we have investigated the dynamic capillarity effects, for which the existence of TW
solutions is proved. Furthermore, the existence of a threshold value for the dynamic capillarity
parameter is shown so that for values less than this the travelling waves are monotonic, and
become non-monotonic for values above the threshold. Moreover, similar thresholds are found
for the dynamic capillary parameter that dictates whether the overshoot will have regions
of positive pressure or whether the overshoot will reach a maximum corresponding to the full
saturation. Also mechanisms to restrict the saturation to physically relevant values are analysed.

Finally, a semi-implicit numerical scheme to solve the nonlinear, pseudo parabolic equations
corresponding to the non-equilibrium model was proposed. For solving the emerging time dis-
crete, nonlinear equations, an L-scheme was used. This scheme is used for solving the original
partial differential equation in a large, but finite domain. For sufficiently large times the numer-
ical solutions show a good resemblance with the travelling wave profiles predicted theoretically.
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